Areope (6) 3G A е Алгебра ЗАДАНИЯ (1) МАТЕРИАЛЫ Задание N91 Не сдано Степень с натуральным показателем. Решение примерое No1. Представьте в виде степени с основанием 3: а) 95, б) 273; в) 814.
Пусть v1, v2, v3 (м/мин) - скорости конькобежцев, t (мин) - время с момента старта, через которое второй конькобежец обогнал первого. Из условия задачи следует, что v2>v1>v3. Пусть q - знаменатель возрастающей геометрической прогрессии, тогда v1=v3*q и v2=v3*q². Имеем систему уравнений:
v2*t=v1*t+400
v1*t=v3*(t+2/3)
v1=v3*q
v2=v3*q²
Из 3-го и 4=го уравнений находим v2=v1*q и v3=v1/q. Подставляя эти выражения в первое и второе уравнения, получаем систему:
v1*q*t=v1*t+400
v1*t=v1/q*(t+2/3)
Умножая второе уравнение на q, приходим к системе:
v1*q*t=v1*t+400
v1*q*t=v1*t+2/3*v1.
Вычитая из второго уравнения первое, находим 2/3*v1=400, откуда v1=600 м/мин.
б)ОДЗ у≠-2; у≠0; приведем к ОЗ=у*(у+2); у²+4у=2у²+4у-у-2; перенесем влево все члены, приведем подобные, получим у²-у-2=0, по теореме. обратной теореме Виета у=2; у=-1, оба корня входят в ОДЗ.
ответ 2; -1.
в) ОДЗ =≠-2; х≠3; приведем к общему знаменателю.
(5х-2)*(х-3)=(6х-21)*(х+2);
5х²-15х-2х+6=6х²+12х-21х-42; х²+8х-48=0; По Виету х=-12; х=4, оба корня входят в ОДЗ,
ответ х=-12; х=4.
3. Рассмотрим разность левой и правой частей. неравенство будет доказано, если эта разность будет больше нуля. итак.
а) х²+2х+1-(х²+2х)=х²-х²+2х-2х+1=1>0, доказано.
б) если докажем, что разность левой и правой частей неотрицательно, то неравенство будет доказано.
ответ: v1=600 м/мин.
Объяснение:
Пусть v1, v2, v3 (м/мин) - скорости конькобежцев, t (мин) - время с момента старта, через которое второй конькобежец обогнал первого. Из условия задачи следует, что v2>v1>v3. Пусть q - знаменатель возрастающей геометрической прогрессии, тогда v1=v3*q и v2=v3*q². Имеем систему уравнений:
v2*t=v1*t+400
v1*t=v3*(t+2/3)
v1=v3*q
v2=v3*q²
Из 3-го и 4=го уравнений находим v2=v1*q и v3=v1/q. Подставляя эти выражения в первое и второе уравнения, получаем систему:
v1*q*t=v1*t+400
v1*t=v1/q*(t+2/3)
Умножая второе уравнение на q, приходим к системе:
v1*q*t=v1*t+400
v1*q*t=v1*t+2/3*v1.
Вычитая из второго уравнения первое, находим 2/3*v1=400, откуда v1=600 м/мин.
2. а) приведем к ОЗ=6, получим
9х-3х²+2х²-х-6х=0; -х²+2х=0; -х*(х-2)=0; х=0; х-2=0⇒х=2
ответ 0; 2.
б)ОДЗ у≠-2; у≠0; приведем к ОЗ=у*(у+2); у²+4у=2у²+4у-у-2; перенесем влево все члены, приведем подобные, получим у²-у-2=0, по теореме. обратной теореме Виета у=2; у=-1, оба корня входят в ОДЗ.
ответ 2; -1.
в) ОДЗ =≠-2; х≠3; приведем к общему знаменателю.
(5х-2)*(х-3)=(6х-21)*(х+2);
5х²-15х-2х+6=6х²+12х-21х-42; х²+8х-48=0; По Виету х=-12; х=4, оба корня входят в ОДЗ,
ответ х=-12; х=4.
3. Рассмотрим разность левой и правой частей. неравенство будет доказано, если эта разность будет больше нуля. итак.
а) х²+2х+1-(х²+2х)=х²-х²+2х-2х+1=1>0, доказано.
б) если докажем, что разность левой и правой частей неотрицательно, то неравенство будет доказано.
а²+1-2*(3а-4)=а²-6а+1+8=а²-6а+9=(а-3)²≥0.
Доказано.