Пишу ход своих мыслей: Если скорость одного велосипедиста больше на 3 км/ч., но известно, что один велосипедист преодолевает этот путь на один час быстрее, тогда: 1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже. 2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее. 3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее 4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
Промежуток знакопостоянства функции - это промежуток, в котором функция сохраняет свой знак. Для нахождения промежутки знакопостоянства линейной функции f(x)=2·x-5 сначала находим нули функции:
f(x)=0 ⇔ 2·x-5=0 ⇔ 2·x = 5 ⇔ x = 2,5.
Так как других нулей у функции нет, то линейная функция f(x)=2·x-5 меняет свой знак только один раз. Поэтому промежутками знакопостоянства будут:
1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже.
2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее.
3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее
4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже
ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
(-∞; 2,5) и (2,5; +∞)
Объяснение:
Промежуток знакопостоянства функции - это промежуток, в котором функция сохраняет свой знак. Для нахождения промежутки знакопостоянства линейной функции f(x)=2·x-5 сначала находим нули функции:
f(x)=0 ⇔ 2·x-5=0 ⇔ 2·x = 5 ⇔ x = 2,5.
Так как других нулей у функции нет, то линейная функция f(x)=2·x-5 меняет свой знак только один раз. Поэтому промежутками знакопостоянства будут:
(-∞; 2,5) и (2,5; +∞).
При x∈(-∞; 2,5) функция отрицательна в силу:
f(0)=2·0-5= -5<0,
а при x∈(2,5; +∞) функция положительна в силу:
f(10)=2·10-5= 15>0.