Объяснение:
Квадраты кончаются на такие цифры:
1^2=1; 2^2=4; 3^2=9; 4^2=16; 5^2=25; 6^2=36; 7^2=49; 8^2=64; 9^2=81; 10^2=100
У нас три последовательных числа.
Если первое кончается на 1, то сумма квадратов кончается на
1+4+9=14, то есть на 4, как второе число.
Чтобы сумма квадратов была нечетной, первое число должно быть четным.
Если первое кончается на 2, то сумма кончается на 4+9+16=29, то есть на 9.
Если первое кончается на 4, то сумма кончается на 16+25+36=77, то есть на 7.
Если первое кончается на 6, то сумма кончается на 36+49+64=149, то есть на 9.
Если первое кончается на 8, то сумма кончается на 64+81+100=245, то есть на 5.
Если первое кончается на 0, то сумма кончается на 0+1+4=5.
Ни при каких условиях сумма трех квадратов последовательных чисел не может кончаться на 3.
ответ: правильное второе число.
x= - 11 точка локального минимума функции
Дана функция
1) Вычислим производную от функции:
2) Находим критические точки:
3) Определим промежутки возрастания и убывания функции. Для этого представим производную от функции в следующем виде и применим метод интервалов:
Точки -11 и -9 делят ось Ох на 3 интервала: (-∞; -11), (-11; -9) и (-9; +∞).
а) Пусть x= -12∈(-∞; -11):
Значит, на интервале (-∞; -11) функция убывает.
б) Пусть x= -10∈(-11; -9):
Значит, на интервале (-11; -9) функция возрастает.
в) Пусть x= 0∈(-9; +∞):
Значит, на интервале (-9; +∞) функция убывает.
4) Определим экстремумы функции:
Функция убывает на интервале (-∞; -11) и возрастает на интервале (-11; -9), то x= - 11 точка локального минимума функции.
Функция возрастает на интервале (-11; -9) и убывает на интервале (-9; +∞), то x= - 9 точка локального максимума функции.
Объяснение:
Квадраты кончаются на такие цифры:
1^2=1; 2^2=4; 3^2=9; 4^2=16; 5^2=25; 6^2=36; 7^2=49; 8^2=64; 9^2=81; 10^2=100
У нас три последовательных числа.
Если первое кончается на 1, то сумма квадратов кончается на
1+4+9=14, то есть на 4, как второе число.
Чтобы сумма квадратов была нечетной, первое число должно быть четным.
Если первое кончается на 2, то сумма кончается на 4+9+16=29, то есть на 9.
Если первое кончается на 4, то сумма кончается на 16+25+36=77, то есть на 7.
Если первое кончается на 6, то сумма кончается на 36+49+64=149, то есть на 9.
Если первое кончается на 8, то сумма кончается на 64+81+100=245, то есть на 5.
Если первое кончается на 0, то сумма кончается на 0+1+4=5.
Ни при каких условиях сумма трех квадратов последовательных чисел не может кончаться на 3.
ответ: правильное второе число.
x= - 11 точка локального минимума функции
Объяснение:
Дана функция
1) Вычислим производную от функции:
2) Находим критические точки:
3) Определим промежутки возрастания и убывания функции. Для этого представим производную от функции в следующем виде и применим метод интервалов:
Точки -11 и -9 делят ось Ох на 3 интервала: (-∞; -11), (-11; -9) и (-9; +∞).
а) Пусть x= -12∈(-∞; -11):
Значит, на интервале (-∞; -11) функция убывает.
б) Пусть x= -10∈(-11; -9):
Значит, на интервале (-11; -9) функция возрастает.
в) Пусть x= 0∈(-9; +∞):
Значит, на интервале (-9; +∞) функция убывает.
4) Определим экстремумы функции:
Функция убывает на интервале (-∞; -11) и возрастает на интервале (-11; -9), то x= - 11 точка локального минимума функции.
Функция возрастает на интервале (-11; -9) и убывает на интервале (-9; +∞), то x= - 9 точка локального максимума функции.