В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
olechkapushkareva
olechkapushkareva
12.05.2023 06:28 •  Алгебра

Бассейн наполняется двумя трубами за 10 ч. за сколько часов бассейн наполнит первая труба, если она это делает на 15 ч быстрее, чем первая

Показать ответ
Ответ:
viakobchuk
viakobchuk
31.07.2020 17:21
Если в лоб, то можно так. Пусть 2я труба наполнит за  х ч. Тогда 1я за х+15 ч. При этом скорость наполнения для 1й  1/x (часть бассейна,наполняемая за 1 час ). А скорость 2й получается 1/(x+15).
Если они будут работать вместе, то скорость будет:
1/x+1/(1+15).
Соответственно при совместной работе они заполнят бассейн за
1/( \frac{1}{x} + \frac{1}{x+15} )  часов, что по условию равно 10 ч.
1/(\frac{1}{x} + \frac{1}{x+15})=10

Упрощаем выражение
1/( \frac{x+15+x}{x(x+15)} )=1/( \frac{15+2x}{x^2+15x)} )= \frac{x^2+15x}{15+2x}

\frac{x^2+15x}{15+2x}=10 \\ \\ 
x^2+15x=10(15+2x)

x^2-5x-150=0 \\ \\ 
D=25-4*(-150)=625 \\ \\ 
 x_{1,2}= \frac{5 \pm 25}{2} \\ x_{1} =15, x_{2} =-10


Отрицательный корень исключаем. Остается x=15.
ответ: 2я труба наполняет бассейн за 15ч.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота