Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 3 : 7, считая от вершины острого угла. Найди большую сторону параллелограмма, если его периметр равен 182.
Очень просто! Пример — (20а³+7а²)-(57+20а³) Для начала раскроем скобки ,при этом меняя знак во второй скобке на противоположный: 20а³+7а²-57-20а³ Далее выполняем действия с подобными слагаемыми: 20а³-20а³+7а²-57= 7а²-57. Далее подобных слагаемых не осталось ,значит подставляем а=2 7×2²-57= 28-57= -29 ответ: -29.
Удачи тебе во всём! Запомни ,если в задании сказано: «Упростите и найдите значения выражения» ,нужно для более рационального решения ,сначала упростить выражение ,а потом уже подставить значение.
Пример — (20а³+7а²)-(57+20а³)
Для начала раскроем скобки ,при этом меняя знак во второй скобке на противоположный:
20а³+7а²-57-20а³
Далее выполняем действия с подобными слагаемыми:
20а³-20а³+7а²-57= 7а²-57.
Далее подобных слагаемых не осталось ,значит подставляем а=2
7×2²-57= 28-57= -29
ответ: -29.
Удачи тебе во всём! Запомни ,если в задании сказано: «Упростите и найдите значения выражения» ,нужно для более рационального решения ,сначала упростить выражение ,а потом уже подставить значение.
1. Обозначим события:
A1 - попадание в первую область мишени;
A2 - попадание во вторую область мишени;
A3 - попадание в третью область мишени.
P(A1) = 0,45;
P(A2) = 0,35;
P(A3) = 0,2.
2. Вероятность событий B и С, что при двух выстрелах стрелок попадет в первую или во вторую область мишени, соответственно, равна:
P(B) = P(A1)^2 = 0,45^2 = 0,2025;
P(С) = P(A2)^2 = 0,35^2 = 0,1225.
3. События B и C несовместимы, поэтому вероятность события D, что при двух выстрелах стрелок попадет либо в первую, либо во вторую область:
P(D) = P(B) + P(C);
P(D) = 0,2025 + 0,1225 = 0,3250.
ответ: 0,3250.