(2^2)^5 / 2^9 * 3^2 = 2^10/2^9 * 3^2 =2^1 * 3^2 = 2^1 * 3^1 * 3^1 = 18^1=18. 1) При возведении степени в степень - основание остается прежним, показатели степени перемножаются. 2) При делении чисел с одинаковыми основаниями , но разными показателями степени - основание остается, а показатели степени вычитаются. При делении чисел с разными основаниями, но одинаковыми показателями степени - основание - это частное от деления чисел, а показатель степени остается. 3) При умножении чисел с одинаковыми основаниями и разными степенями, основание остается, степени складываются; при умножении чисел с разными основаниями, но одинаковыми степенями - основания перемножаются, степень остается.
Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1