1. а) подставим верхний и нижний пределы интегрирования в (-х³-2х²+2х), применим формулу Ньютона - Лейбница, получим (-1-2+2)-(8-8-4)=4-1=3
б) подставим верхний и нижний пределы интегрирования в 0.5(-сtg2х), применим формулу Ньютона - Лейбница, получим
0.5*(-ctgπ/2-(-ctgπ/4))=0.5*(0-(-1))=0.5
в) подставим верхний и нижний пределы интегрирования в 2/(x-3), применим формулу Ньютона - Лейбница, получим 2/(2-3)-2/(1-3)=
-2-2/(-2)=-1
г) подставим верхний и нижний пределы интегрирования в (х⁵/⁴)/(5/4) применим формулу Ньютона - Лейбница, получим (16⁵/⁴)/(5/4) -(1⁵/⁴)/(5/4) =(4/5)*(32-1)=31*4/5=124/5=24.8
2. Надо найти определенный интеграл от единицы до трех от
(-х²+6х-5-0)dx, т.е. в (-х³/3+3х²-5х) подставить верхний и нижний пределы интегрирования и применить формулу Ньютона - Лейбница.
Объяснение:
1) х≤3
2) -∞≤ у ≤4
3) у∠0 при х∠-1
0 ∠у при -1 ∠ х ∠ 2 или 2 ∠ х
4) х=-1 для четной должно выполняться у(-1)=у(1)
у(-1)=0 ,а у(1)=2 при четной 0=2(? ) ложно,значит не четная!
для нечетной должно выполняться у(-1)= -у(1) 0=-2(?) ложно! Значит это не четная и не нечетная!
Вторая задача. наибольшее значение син 2х = 1 а наименьшее -1.
2*син 1 -5≈ 2*0,84-5≈ -3,32 (угол в радианах!)
2*син(-1 ) -5≈ -2*0,84-5≈ -6,68 (угол в радианах!)
3 задание. х/3 ≠п к, х≠3пк
период равен 3п
1. а) подставим верхний и нижний пределы интегрирования в (-х³-2х²+2х), применим формулу Ньютона - Лейбница, получим (-1-2+2)-(8-8-4)=4-1=3
б) подставим верхний и нижний пределы интегрирования в 0.5(-сtg2х), применим формулу Ньютона - Лейбница, получим
0.5*(-ctgπ/2-(-ctgπ/4))=0.5*(0-(-1))=0.5
в) подставим верхний и нижний пределы интегрирования в 2/(x-3), применим формулу Ньютона - Лейбница, получим 2/(2-3)-2/(1-3)=
-2-2/(-2)=-1
г) подставим верхний и нижний пределы интегрирования в (х⁵/⁴)/(5/4) применим формулу Ньютона - Лейбница, получим (16⁵/⁴)/(5/4) -(1⁵/⁴)/(5/4) =(4/5)*(32-1)=31*4/5=124/5=24.8
2. Надо найти определенный интеграл от единицы до трех от
(-х²+6х-5-0)dx, т.е. в (-х³/3+3х²-5х) подставить верхний и нижний пределы интегрирования и применить формулу Ньютона - Лейбница.
получим (-3³/3+3*3²-5*3)-(-1/3+3-5)=27-9-15+1/3+2=5 1/3/ед. кв./