ЧАСТЬ В РЕШАТЬ С ОБЪЯСНЕНИЯМИ,ЧАСТЬ А ОТВЕТЫ
Три правила нахождения первообразной
Часть А
А1. Среди данных функций выберите ту, производная которой равна f(x) = 20x4.
1) F(x) = 4x5
2) F(x) =5x5
3) F(x) = x5
4) F(x) = 80x3
A2. Найдите общий вид первообразных для функции f(x) = 4x3 – 6
1) F(x) = x4 -6x + 5
2) F(x) = x4 - 6x + C
3) F(x) = 12x2 + C
4) F(x) = 12x2 – 6
A3.Для функции f(x) =8x – 3 найдите первообразную, график которой проходит через точку М (1; 4).
1) F(x) = 4x2 – 3x
2) F(x) = 4x2 – 3x -51
3) F(x) = 4x2 – 3x + 4
4) F(x) = 4x2 - 3x +3
A4. Найдите общий вид первообразных для функции f(x) = 2/x3
1) F(x) = 1/x +C
2) F(x) = - 2/x + C
3) F(x) = - 1/x2 + C
4) F(x) = 2/x2+ C
A5. Первообразной для функции f(x) = sin x + 3x2 является функция
1) F(x) = sin x +x3 – 5
2) F(x) = -cos x – x2 -1
3) F(x) = -cos x + x3 -2
4) F(x) = -x3cos x -3
A6. Первообразной для функции f(x) = 3sin x является функция
1)F(x) = - 3xcos 3x
2) F(x) = - cos 3x
3) F(x) = - 3cos 3x
4) F(x) = - 3cos x
Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Объяснение:
Arcsin(ctg(π/4))=arcsin(1)=π/ 2 cos(arcsin(-1/2)-arcsin(1))=cos(2π/3-π/2)= cos(4π/6-3π/6)=cos(π/6)=√3/2.
Объяснение:
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 143
136 + 16 > 143 неверно