1) Пусть R - радиус основания, тогда площадь боковой поверхности прямого кругового цилиндра равна произведению длины окружности основания (2πR) на высоту, которая согласно условию задачи равна R:
2πR · R = 25,12
2πR² = 25,12
R² = 25,12 / 2π (1)
2) Так как основанием прямого кругового цилиндра является круг, то площадь основания S осн такого цилиндра рассчитывается по формуле площади круга:
S осн = π R² (2).
Подставим в (2) вместо R² его значение из (1), получим:
12,56 см²
Объяснение:
1) Пусть R - радиус основания, тогда площадь боковой поверхности прямого кругового цилиндра равна произведению длины окружности основания (2πR) на высоту, которая согласно условию задачи равна R:
2πR · R = 25,12
2πR² = 25,12
R² = 25,12 / 2π (1)
2) Так как основанием прямого кругового цилиндра является круг, то площадь основания S осн такого цилиндра рассчитывается по формуле площади круга:
S осн = π R² (2).
Подставим в (2) вместо R² его значение из (1), получим:
S осн = π R² = π · 25,12 / 2π = 25,12/2 = 12,56 см²
ответ: 12,56 см²
x∈(-∞;-3] и x∈(-1;5)
Объяснение:
Выражение не имеет смысла, если подкоренное выражение <0
Числитель обращается в ноль при x=5 и x=-1
Знаменатель = 0 при x=-3
Методом интервалов находим, где выражение отрицательно:
- + - +
-------------°--------------------°------------------°------------------------
-∞ -3 -1 5 +∞
x∈(-∞;-3] и x∈(-1;5)
Точку x=-3 включаем, как число, в котором значменатель обращается в ноль