Четыре числа образуют геометрическую прогрессию. Если к ним добавить соответственно 3, 11, 7 и 15, тогда получим четыре числа, образующих арифметическую прогрессию. Найди числа, образуют геометрическую прогрессию.
ответ:
знаменатель геометрической прогрессии: q =
члены геометрической прогрессии:
b1 =
b2 =
b3 =
b4 =
Четыре числа образуют геометрическую прогрессию. Если к ним добавить соответственно 3, 11, 7 и 15, тогда получим четыре числа, образующих арифметическую прогрессию. Найдите эти числа.
ответ: q = -7/6 ;
b₁ = 432 /169 ; b₂= - 504 /169 ; b₃= 588/169 ; b₄= - 686/169
Объяснение: b₁ ; b₂ ; b₃; b₄ || b₁≡ b || b; bq ; bq² ; bq³
b+3 ; bq+11 ; bq²+7 ; bq³+15 составляют арифметическую прогрессию
{2(bq+11) =b+3+ bq²+7 { b(q-1)² =12
{2(bq²+7) =bq+11 +bq³+15 { bq(q-1)² = -14 разделим 2 -ое уравнение
системы на 1-ое ⇒ q = -7/6 ; затем из первого уравнения системы
b = 12 / (q-1)² = 12 / (-7/6-1)²= 12 / (-13/6)² = 12*6²/13² = 432 /169
b₁≡ b =432 /169
b₂=b*q =(432/169 )*(-7/6) = - 504 /169 ;
b₃=b*q² =(432/169 )*(-7/6)² = 588/169 ;
b₄ =bq³ =(432/169)*(-7/6)³ = - 686/169 .