Это возрастающая функция, но чем правее, тем она растет медленнее, поскольку с ростом x убывает. Значит, при возрастании аргумента с 5 до 7 (на 2 единицы) функция увеличится больше, чем при возрастании аргумента с 11 до 13 ( на те же 2 единицы). Вывод:
.
Если такими методами пользоваться нельзя, произведем несколько преобразований, не изменяющих знак между левой и правой частями.
;
возводим в квадрат:
еще одно возведение в квадрат приводит к очевидному неравенству
Значит, во всех местах, можно заменить знак вопроса на знак больше
Размещением (из n по k) называется упорядоченный набор из k различных элементов из некоторого множества различных n элементов.
Например, в комнате стоит 4 стула. Зашли 10 человек. Как они могут «разместиться» на эти стулья? Четверо из 10 сядут, но сесть могут по-разному, и эта четвёрка людей может быть разной! Каждая такая четвёрка и называется размещением.
Количество всех людей – n.
Количество стульев – k.
Вот и получается из n по k. Из 10 по 4.
Или ещё классический школьный пример: три элемента: a; b; c. Составить размещения из трёх элементов по два:
ab; ba; bc; cb; ac; ca.
Всего 6 возможных размещений. Обратите внимание, ab и ba – это разные размещения!
Это возрастающая функция, но чем правее, тем она растет медленнее, поскольку с ростом x убывает. Значит, при возрастании аргумента с 5 до 7 (на 2 единицы) функция увеличится больше, чем при возрастании аргумента с 11 до 13 ( на те же 2 единицы). Вывод:
.
Если такими методами пользоваться нельзя, произведем несколько преобразований, не изменяющих знак между левой и правой частями.
;
возводим в квадрат:
еще одно возведение в квадрат приводит к очевидному неравенству
Значит, во всех местах, можно заменить знак вопроса на знак больше
Размещением (из n по k) называется упорядоченный набор из k различных элементов из некоторого множества различных n элементов.
Например, в комнате стоит 4 стула. Зашли 10 человек. Как они могут «разместиться» на эти стулья? Четверо из 10 сядут, но сесть могут по-разному, и эта четвёрка людей может быть разной! Каждая такая четвёрка и называется размещением.
Количество всех людей – n.
Количество стульев – k.
Вот и получается из n по k. Из 10 по 4.
Или ещё классический школьный пример: три элемента: a; b; c. Составить размещения из трёх элементов по два:
ab; ba; bc; cb; ac; ca.
Всего 6 возможных размещений. Обратите внимание, ab и ba – это разные размещения!