Одночасно від двох пристаней назустріч один одному відійшли два моторні човни з однаковими швидкостями. Через 1 год вони зустрілися. Човен, який плив за течією, пройшов на 3,2 км більше, ніж інший човен. Обчисли швидкість течії річки.
Одновременно от двух пристаней навстречу друг другу отошли две моторные лодки с одинаковыми скоростями. Через 1 час они встретились. Лодка, которая плыла по течению на 3,2 км больше, чем другая лодка. Вычисли скорость течения реки.
Две хлопкоуборочные машины, работая одновременно, могут собрать урожай с поля на 8 дней быстрее, чем одна первая машина, и на 2 дня быстрее, чем одна вторая машина. За сколько дней может собрать урожай каждая машина, работая отдельно?
1 - весь урожай.
x - время уборки урожая двумя машинами (дни).
x + 8 - время уборки урожая первой машиной (в днях).
х + 2 - время уборки урожая второй машиной (в днях).
По условию задачи уравнение:
1/(x + 8) + 1/(x + 2) = 1/x
Умножить все части уравнения на х(х + 8)(х + 2), чтобы избавиться от дробного выражения:
х(х + 2) + х(х + 8) = (х + 8)(х + 2)
х² + 2х + х² + 8х = х² + 2х + 8х + 16
2х² + 10х = х² + 10х + 16
2х² + 10х - х² - 10х = 16
х² = 16
х = 4 (дня) - время уборки урожая двумя машинами.
4 + 8 = 12 (дней) - время уборки урожая первой машиной.
4 + 2 = 6 (дней) - время уборки урожая второй машиной.
В решении.
Объяснение:
Розв’яжи задачу, склавши рівняння:
Одночасно від двох пристаней назустріч один одному відійшли два моторні човни з однаковими швидкостями. Через 1 год вони зустрілися. Човен, який плив за течією, пройшов на 3,2 км більше, ніж інший човен. Обчисли швидкість течії річки.
Одновременно от двух пристаней навстречу друг другу отошли две моторные лодки с одинаковыми скоростями. Через 1 час они встретились. Лодка, которая плыла по течению на 3,2 км больше, чем другая лодка. Вычисли скорость течения реки.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодок.
у - скорость течения реки.
х + у - скорость лодки по течению.
х - у - скорость лодки против течения.
По условию задачи уравнение:
(х + у)*1 - (х - у)*1 = 3,2
х + у - х + у = 3,2
2у = 3,2
у = 3,2/2
у = 1,6 (км/час) - скорость течения реки.
В решении.
Объяснение:
Две хлопкоуборочные машины, работая одновременно, могут собрать урожай с поля на 8 дней быстрее, чем одна первая машина, и на 2 дня быстрее, чем одна вторая машина. За сколько дней может собрать урожай каждая машина, работая отдельно?
1 - весь урожай.
x - время уборки урожая двумя машинами (дни).
x + 8 - время уборки урожая первой машиной (в днях).
х + 2 - время уборки урожая второй машиной (в днях).
По условию задачи уравнение:
1/(x + 8) + 1/(x + 2) = 1/x
Умножить все части уравнения на х(х + 8)(х + 2), чтобы избавиться от дробного выражения:
х(х + 2) + х(х + 8) = (х + 8)(х + 2)
х² + 2х + х² + 8х = х² + 2х + 8х + 16
2х² + 10х = х² + 10х + 16
2х² + 10х - х² - 10х = 16
х² = 16
х = 4 (дня) - время уборки урожая двумя машинами.
4 + 8 = 12 (дней) - время уборки урожая первой машиной.
4 + 2 = 6 (дней) - время уборки урожая второй машиной.
Проверка:
1/6 + 1/12 = 1/4
1/4 = 1/4, верно.