cos^2 a = 1 - sin^2 a
cos a = ±√ (1 - sin^2 a )
В первой четверти косинус положителен, значит:
cos a = √ (1 - sin^2 a )
cos a = √ (1 - 25/169)
cos a = √ 144/169
cos a = 12/13
Тогда тангенс (отношение синуса к косинусу) равен:
tg a = (5/13)/(12/13) = 5/12
ответ: cos a = 12/13, tg a = 5/12.
2 вариант (если угол альфа расположен во второй четверти) .
Используем основное тригонометрическое тождество:
Во второй четверти косинус отрицателен, значит:
cos a = - √ (1 - sin^2 a )
cos a = - √ (1 - 25/169)
cos a = - √ 144/169
cos a = - 12/13
tg a = (5/13)/(-12/13) = - 5/12
ответ: cos a = - 12/13, tg a = - 5/12.
cos^2 a = 1 - sin^2 a
cos a = ±√ (1 - sin^2 a )
В первой четверти косинус положителен, значит:
cos a = √ (1 - sin^2 a )
cos a = √ (1 - 25/169)
cos a = √ 144/169
cos a = 12/13
Тогда тангенс (отношение синуса к косинусу) равен:
tg a = (5/13)/(12/13) = 5/12
ответ: cos a = 12/13, tg a = 5/12.
2 вариант (если угол альфа расположен во второй четверти) .
Используем основное тригонометрическое тождество:
cos^2 a = 1 - sin^2 a
cos a = ±√ (1 - sin^2 a )
Во второй четверти косинус отрицателен, значит:
cos a = - √ (1 - sin^2 a )
cos a = - √ (1 - 25/169)
cos a = - √ 144/169
cos a = - 12/13
Тогда тангенс (отношение синуса к косинусу) равен:
tg a = (5/13)/(-12/13) = - 5/12
ответ: cos a = - 12/13, tg a = - 5/12.
cos^2 a = 1 - sin^2 a
cos a = ±√ (1 - sin^2 a )
Во второй четверти косинус отрицателен, значит:
cos a = - √ (1 - sin^2 a )
cos a = - √ (1 - 25/169)
cos a = - √ 144/169
cos a = - 12/13
Тогда тангенс (отношение синуса к косинусу) равен:
tg a = (5/13)/(-12/13) = - 5/12
ответ: cos a = - 12/13, tg a = - 5/12.
25 м
Объяснение:
Из первого условия следует, что AD║BC
Из второго следует, что BC∦CD
Значит ABCD - трапеция.
Причем по 3му условию, т.к. ∠B = ∠C, то трапеция равнобедренная (AB = CD)
S трап = (BC + AD)/2 * h
h = (432*2)/(11 + 25)
h = 24 м
Проведем высоты на AD из точек В и С. Они будут равны каждая по 24 м.
Н₁ВСН₂ - прямоугольник, тогда Н₁Н₂ = 11м
АН₁ = АН₂ т.к. трапеция равнобедренная, и тогда
АН₁ = АН₂ = (25 - 11)/2 = 7 м
Тогда рассмотрим треугольник АВН₁
По теореме Пифагора: АВ² = 7² + 24²
АВ² = 625
АВ = 25