Чому дорівнює тангенс кута нахилу дотичної до графіка функції f(x)=2x-x³ у точці x =0? А. -1. Б. 2. В. 0. Г.-2.
5. Складіть рівняння дотичної до графіка функції f(x)=3-2x-x² у точці
з абсцисою хо=0. А. у=-2x-3.Б. у=2x+3.В. у=-2x+3.Г. y=2x-3.
6. Тіло рухається прямолінійно за законом s(t)=1³-412 (час t вимірюєть ся в секундах, шлях 8 - у метрах). Знайдіть швидкість тіла в момент
часу t=5 с. А. 20 м/с. Б. 115 м/с. В. 35 м/с. Г. 70 м/с.
1) Если принять за Х количество дней за которые планировалось изготовить все детали (изготавливая по 20 дет. в день), то количество деталей можно выразить как 20Х. Каждый день рабочий фактически делал не 20, а 20+8=28 деталей и изготовил (20Х+8) деталей за (Х-2) дня. Поэтому можно записать уравнением:
28(Х-2)=20Х+8
28Х-20Х=8+56
Х=64/8=8
Задание рабочий должен был выполнить за 8 дней (при этом изготовить 20*8=160 деталей, изготавливая по 28 дет. в день за 8-2=6 дней он сделал 28*6=168 деталей, т.е. на 8 больше).
2) Аналогичная задача: по 10 зад. в день нужно делать Х дней, всего задач будет 10Х. Если делать по 10+4=14 задач за Х-3 дня то нужно еще сделать 2 задачи, чтобы стало 10Х, уравнение принимает вид:
14(Х-3)+2=10Х
14Х-10Х=42-2
Х=40/4=10
Если решать 10 дней по 10 задач, то всего нужно решить 10*10=100 задач. (Если решать по 14 задач 10-3=7 дней, то останется решить 2 задачи: 14*7=98 зад., 100-98=2 зад.).
3) Если представить условно двузначное число в виде цифр (ав), то его можно математически выразить в форме а*10+в. Обратное выражение (ва) - это в*10+а. Известно, что соблюдаются два условия:
(а*10+в) - 54= в*10+а и а=3в, решаем данную систему уравнений, подставив второе выражение в первое.
3в*10+в-54=10в+3в
в=54/18=3
а=3в=3*3=9,
ответ: двузначное число - это 93
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)