Скорость первого рабочего v₁ деталей в минуту Скорость второго рабочего v₂ деталей в минуту Пусть в партии S деталей. Тогда (S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии. S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию. Если х - искомое количество деталей, то (S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии. Отсюда x=S(1-v₂/(2v₁)). Из 1-го и 2-го уравнений получим v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е. S^2=2(S-8)(S-15). Решаем это квадратное уравнение, получаем корни 6 и 40. 6 не подходит, т.к. количество деталей больше 6. Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24. ответ: 24 детали.
ответ: 115 км/час.
Объяснение:
Дано.
Скорость по ровному участку Vровн. = х км/час.
Скорость под гору V под гору =х+5 км/час.
Скорость в гору V в гору = х-15 км/час.
Дорога от А к В равна 100 км в гору
Время туда и обратно затратил 1 час 50 мин.
Решение.
t1= S в гору/(x-15)час =100/(х-15).
t2= S под гору /(х+5) час = 100/(х+5).
Общее время 1 5/6 часа
100/(х-15) + 100/(х+5) = 1 5/6.
После преобразования получим уравнение
11х²-1310х+5175=0.
а=11; b= -1310; c= 5175;
D=1488400 >0 - 2 корня
х1= 115; х2= 4,09 - не соответствует условию.
Скорость автомобиля по ровному участку равна 115 км/час.
Проверим:
Скорость в гору равна 115-15=100 км/час
Скорость под гору равна 115+5=120 км/час
Время в пути 100/100+100/120=1+5/6 =1 5/6 часа или 1 час 50 минут.
Всё правильно!
Скорость второго рабочего v₂ деталей в минуту
Пусть в партии S деталей.
Тогда
(S-15)/v₁=S/(2v₂) - время, за которое 2-й сделал половину партии.
S/v₁=(S-8)/v₂ - время, за которое 1-ый сделал всю партию.
Если х - искомое количество деталей, то
(S-x)/v₂=S/(2v₁) - время, за которое 1-ый сделал половину партии.
Отсюда x=S(1-v₂/(2v₁)).
Из 1-го и 2-го уравнений получим
v₁/v₂=S/(S-8) и v₁/v₂=2(S-15)/S, т.е.
S^2=2(S-8)(S-15).
Решаем это квадратное уравнение, получаем корни 6 и 40.
6 не подходит, т.к. количество деталей больше 6.
Значит S=40, откуда v₁/v₂=40/(40-8)=5/4, откуда x=40*(1-4/10)=24.
ответ: 24 детали.