Объяснение:сумма углов ЛЮБОГО треугольника равна 180°.
Пусть неизвестные углы обозначим через x
1) 70°+50°+х°=180
120+х=180
Х=180-120
х=60°
2) 90+45+х=180
135+х=180
Х=180-135
х=45
3) у равнобедренного треугольника углы при основании равны
180-80=100
100:2=50
ответ: оба угла равны 50°
4)тоже равнобедренный треугольник, один угол в основании равен 15°, значит и второй угол тоже равен 15°, остаётся найти верхний угол,
15+15+х=180
30+х=180
Х=180-30
Х=150°
5)тоже равнобедренный, известен лишь смежный угол с углом при основании, сумма смежных углов равна 180, а их 2, т.е. если один будет равен 120, то 180-120=60°, следовательно два угла при основании равны 60°
60+60+60=180°, все три угла равнф 60°, следовательно треугольник равносторонний
6)биссектриса делит угол ровно попалам) треуогольник АВС равнобедреный, следовательно, если угол С=50°, то и угол А=50, угол
Объяснение:сумма углов ЛЮБОГО треугольника равна 180°.
Пусть неизвестные углы обозначим через x
1) 70°+50°+х°=180
120+х=180
Х=180-120
х=60°
2) 90+45+х=180
135+х=180
Х=180-135
х=45
3) у равнобедренного треугольника углы при основании равны
180-80=100
100:2=50
ответ: оба угла равны 50°
4)тоже равнобедренный треугольник, один угол в основании равен 15°, значит и второй угол тоже равен 15°, остаётся найти верхний угол,
15+15+х=180
30+х=180
Х=180-30
Х=150°
5)тоже равнобедренный, известен лишь смежный угол с углом при основании, сумма смежных углов равна 180, а их 2, т.е. если один будет равен 120, то 180-120=60°, следовательно два угла при основании равны 60°
60+60+60=180°, все три угла равнф 60°, следовательно треугольник равносторонний
6)биссектриса делит угол ровно попалам) треуогольник АВС равнобедреный, следовательно, если угол С=50°, то и угол А=50, угол
ДАС=25°
25+50+Х=180
Х=180-75
Х=105°
6)180-137=43
Углы СОД и ВОА равны 43°
Углы В, А, С, Д будут равны:
180-43=137
137:2=68, 5
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.