Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Объяснение:
Arcsin(ctg(π/4))=arcsin(1)=π/ 2 cos(arcsin(-1/2)-arcsin(1))=cos(2π/3-π/2)= cos(4π/6-3π/6)=cos(π/6)=√3/2.
ответы в решениях.
Объяснение:
1) x²+2x-24=0;
По теореме Виета
x1+x2=-2; x1*x2=-24;
x1=4; x2=-6.
***
2) x²-9x+20=0;
x1+x2=9; x1*x2=20;
x1=5; x2=4.
***
3) 10n²-9n+2=0;
a=10; b=-9; c=2.
D=b²-4ac=(-9)²-4*10*2=81-80=1>0 - 2 корня.
x1=(-b+√D)/2a=(-(-9)+√1)/2*10=8/20 = 0.4;
x2=(-b-√D)/2a=(-(-9)-√1)/2*10= 10/20= 1/2 = 0.5.
***
4) 21y²-2y-3=0;
a=21; b=-2; c=-3;
D=256>0 - 2 корня.
y1=0.428; y2=0.333.
***
5) x²+8x-13=0;
x1+x2=-8; x1*x2=-13;
x1=1,38; x2=-9,38.
***
6)2x²-4x-17=0;
a=2; b=-4; c=-17;
D= 152 >0 - 2 корня.
x1=4,08; x2= -2,08.
***
7) 9x²+42x+49=0;
a=9; b=42; c=49;
D=0 - 1 корень;
x=-b/2a=-42/2*9=-42/18 = -2,33.
***
8) x²-10x+37=0;
a=1; b=-10; c=37;
D= -48 - нет корней.