Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Сумма равна (полусумме первого и последнего члена) умноженного на колличество членов. Полусумма - это среднее арифметическое первого и последнего,оно равно среднему арифметическомиу любой пары равноудаленной от медианы ряда.
(6,4+13,6)*10/2=100 сумма равна 100.
2)
а₁=3; а₁₀= 17 (а₁+ а₁₀)*н/2= сумма 10 членов
(3+17)*10/2=100 сумма равна 100.
3)b₁=-17,d=6 , b₁₀=-17+9*6 =37
сумма 10 членов равна (b₁+ b₁₀)*н/2=(-17+37)*10/2=100
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше
Объяснение:
Найдите сумму первых 10 членов арифметической прогрессии:
1) b₁=6,4; d=0,8 b₁₀= b₁+9d=6,4+0,8*9=6,4+7,2=13,6
Сумма равна (полусумме первого и последнего члена) умноженного на колличество членов. Полусумма - это среднее арифметическое первого и последнего,оно равно среднему арифметическомиу любой пары равноудаленной от медианы ряда.
(6,4+13,6)*10/2=100 сумма равна 100.
2)
а₁=3; а₁₀= 17 (а₁+ а₁₀)*н/2= сумма 10 членов
(3+17)*10/2=100 сумма равна 100.
3)b₁=-17,d=6 , b₁₀=-17+9*6 =37
сумма 10 членов равна (b₁+ b₁₀)*н/2=(-17+37)*10/2=100
сумма 10 членов равна 100