-2 2 a<-2 log(1/6)x<-2⇒x>36 a>2 log(1/6)x>2⇒x<1/36 Так как основание логарифма меньше 1,то функция убывающая и знак неравенства меняется на противоположный.
lg(x^2+x-20) < lg(4x-2) ОДЗ х²+х-20>0 x1+x2=-1 U x1*x2=-20⇒x1=-5 U x2=4 + _ +
-5 4 x<-5 Ux>4 4x-2>0 ⇒x>1/2 x∈(4;≈)
x²+x-20<4x-2 x²-3x-18<0 x1+x2=3 U x1*x2=-18⇒x1=-3 U x2=6 + _ +
-3 6 x∈(-3;6) Совмещаем с ОДЗ⇒х∈ (4;6) На данном промежутке только одно целое решение х=5.
По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
a²-4>0
(a-2)(a+2)>0
+ _ +
-2 2
a<-2 log(1/6)x<-2⇒x>36
a>2 log(1/6)x>2⇒x<1/36
Так как основание логарифма меньше 1,то функция убывающая и знак неравенства меняется на противоположный.
lg(x^2+x-20) < lg(4x-2)
ОДЗ х²+х-20>0 x1+x2=-1 U x1*x2=-20⇒x1=-5 U x2=4
+ _ +
-5 4
x<-5 Ux>4
4x-2>0 ⇒x>1/2
x∈(4;≈)
x²+x-20<4x-2
x²-3x-18<0
x1+x2=3 U x1*x2=-18⇒x1=-3 U x2=6
+ _ +
-3 6
x∈(-3;6)
Совмещаем с ОДЗ⇒х∈ (4;6)
На данном промежутке только одно целое решение х=5.
ответ: Подпишитесь на мой канал в ютубе
Объяснение:
По определению, функция является четной, если ее область определения симметрична относительно начала координат, и у(- х) = у(х). Если же у(- х) = - у(х), то такая функция будет нечетной.
Найдем область определения функции y = tg 3x. Так как tg 3x = sin 3x / cos 3x, то cos 3x ≠ 0, следовательно,
3х ≠ П/2 + Пn, n – из множества Z.
x ≠ П/6 + Пn/3, n – из множества Z.
Таким образом, область определения функции D(y): все числа, кроме x ≠ П/6 + Пn/3, n – из множества Z – симметрична относительно 0.
у(- х) = tg (3 * (- x)) = tg (- 3x) = - tg 3x = - (y(x)), следовательно, данная функция является нечетной.