Дано уравнение: yx + 32 – 2х + 32 = 3 . Используя метод замены переменной, приведите данное уравнение к виду: 2 - 30. 2t - 3= 0. b. Покажите, что решением уравнения будет корень: х = 49
ответ:Зависимость x1(t) и x2(t) - это линейные функции, следовательно графиком будет являться прямая, значит тебя движутся равномерно. Начальные координаты тел: x01 = 10 м х02 = 4 м Проекции скоростей (в данной задаче они же и модули скоростей) Vx1 = 2 м/с Vx2 = 5 м/с Тела встретились, значит х1=х2 10 + 2t = 4 + 5t 3t = 6 t = 2 с Теперь, чтобы найти координату точки встречи, подставим найденное t в любое уравнение движения. Если в первое: х = 10 + 2t = 10 + 2*2 = 14 м Если во второе: х = 4 + 5t = 4 + 5*2 = 14 м
ответ:Зависимость x1(t) и x2(t) - это линейные функции, следовательно графиком будет являться прямая, значит тебя движутся равномерно. Начальные координаты тел: x01 = 10 м х02 = 4 м Проекции скоростей (в данной задаче они же и модули скоростей) Vx1 = 2 м/с Vx2 = 5 м/с Тела встретились, значит х1=х2 10 + 2t = 4 + 5t 3t = 6 t = 2 с Теперь, чтобы найти координату точки встречи, подставим найденное t в любое уравнение движения. Если в первое: х = 10 + 2t = 10 + 2*2 = 14 м Если во второе: х = 4 + 5t = 4 + 5*2 = 14 м
Объяснение:
Высоты треугольника пересекаются в одной точке.
Следовательно, достаточно найти уравнения двух любых высот треугольника и точку их пересечения, решив систему двух уравнений.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Значит надо найти уравнение стороны треугольника и уравнение прямой, проходящей через противоположную вершину, перпендикулярно этой стороне.
Уравнение прямой АВ найдем по формуле:
(X-Xa)/(Xb-Xa)=(Y-Ya)/(Yb-Ya). Или
(X+4)/2=(Y-0)/-2 - каноническое уравнение =>
y=-x-2 - уравнение прямой с угловым коэффициентом k=-1.
Условие перпендикулярности прямых: k1=-1/k => k1=1.
Тогда уравнение перпендикуляра к стороне АВ из вершины С
найдем по формуле:
Y-Yс=k1(X-Xс) или Y-2=X-2 =>
y=х (1) - это уравнение перпендикуляра СС1.
Уравнение прямой АС:
(X-Xa)/(Xс-Xa)=(Y-Ya)/(Yс-Yа). Или
(X+4)/6=(Y-0)/2 - каноническое уравнение =>
y=(1/3)x+4/3 - уравнение прямой с угловым коэффициентом k=1/3.
Условие перпендикулярности прямых: k1=-1/k => k1 = -3.
Тогда уравнение перпендикуляра к стороне АС из вершины В
найдем по формуле:
Y-Yb=k1(X-Xb) или Y+2=-3(X+2) =>
y=-3х-8 (2)- это уравнение перпендикуляра BB1.
Точка пересечения перпендикуляров имеет координаты:
х=-3х - 8 (подставили (1) в (2)) => х = -2.
Тогда y = -2.
ответ: точка пересечения высот совпадает с вершиной В(-2;-2)
треугольника, то есть треугольник прямоугольный с <B=90°.
Для проверки найдем длины сторон треугольника:
АВ=√(((-2-(-4))²+(-2)²) = 2√2.
ВС=√(((2-(-2))²+(2-(-2))²) = 4√2.
АС=√(((2-(-4))²+2²) = 2√10.
АВ²+ВС² = 40; АС² = 40.
По Пифагору АВ²+ВС² = АС² - треугольник прямоугольный.
Объяснение: