Детская площадка имеет форму прямоугольника, площадь которого равна 221 м2. одна его сторона на 4 метр(-ов, -а) больше, чем другая. детской площадке необходимо построить бордюр. в магазине продаётся материал для бордюра в упаковках. в одной упаковке имеется 20 метров(-а) материала.
1. вычисли длину и ширину детской площадки.
меньшая сторона детской площадки (целое число) равна:
м.
большая сторона детской площадки (целое число) равна:
м.
2. вычисли, сколько упаковок материала для бордюра необходимо купить.
необходимое количество упаковок равно:
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.
(a-b)^2=a^2-2ab+b^2
получаем (x^2-4x+4)/(x-1)<0
решаем квадратное уравнение
x^2-4x+4=0
D=0, значит -b/2a и один корень
x=2
:> a(x-x1)(x-x1)(x-2)(x-2)
это у нас такая формула есть (не знаю как она называется)
значит общая у нас будет (x-2)(x-2)/(x-1)<0
у нас неравенство, значит x=2 x=1
пишем это на линию
___+1-2+>
считаем интервалы + и -
нам нужно меньше нуля , значит от 1 до 2
ответ : "(1;2)"
(скобки не квадратные потому что у нас не меньше либо равно 0, а просто меньше нуля)