Детская площадка имеет форму прямоугольника, площадь которого равна 55м^2. Одна его сторона на 6 метр-
ов, -а) больше, чем другая. Детской площадке необходимо построить бордюр. В магазине продаётся материал
для бордюра в упаковках. В одной упаковке имеется 5 метров(-а) материала.
1. Вычисли длину и ширину детской площадки.
Меньшая сторона детской площадки равна:
Большая стороны детская площадки равна:
2. Вычисли, сколько упаковок материала для бордюра необходимо купить.
Необходимое количество упаковок равно:
Операции со степенями.
1. При умножении степеней с одинаковым основанием их показатели складываются:
a m · a n = a m + n .
2. При делении степеней с одинаковым основанием их показатели вычитаются.
3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.
( abc… ) n = a n · b n · c n …
4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):
( a / b ) n = a n / b n .
5. При возведении степени в степень их показатели перемножаются:
( a m ) n = a m n .
a) Выражение имеет смысл когда подкоренное выражение неотрицательно. Тогда
-x ≥ 0 ⇔ x ≤ 0 ⇔ x∈(-∞; 0].
b) В силу пункта а) область определения функции : D(y)=(-∞; 0].
Значение квадратного корня неотрицательно, поэтому множество значений функции : E(y)=[0; +∞).
Чтобы построить график функции определим несколько значений функции:
График функции в приложенном рисунке 1.
c) Чтобы показать на графике значения х при у=2 и y=2,5 сначала определим эти значения. Для этого решаем уравнения:
Получили целое число.
Приближенные значение х=–6,25≈–6.