Длина первого участка на 30 м меньше его ширины. длина второго участка в 2 раза больше длины первого. а ширина в 2 раза меньше ширины первого. площадь второго участка 64800 м2, найдите длину первого участка. пусть длина первого участка равна х метров. какое уравнение соответствует условию ?
а) (1,5;2) б) (3;1) в) (-4;27)
Объяснение:
а) y = 2x − 1 и y = 2
2x − 1 = 2
2х = 2 + 1
2х = 3 /2
x = 1,5
y = 2*1,5 - 1 = 3 - 1 = 2
(1,5;2)
б) y = 1/3х и у = 2x − 5
1/3х = 2x − 5
1/3х - 2х = -5 *3
х - 6х = -15
-5x = -15 /(-5)
x = 3
y = 1/3*3 = 1
y = 2*3 - 5 = 1
(3;1)
в) y = −4x + 11 и y = 12x + 75
−4x + 11 = 12x + 75
-4x − 12x = 75 − 11
-16x = 64 /(-16)
x = -4
y = -4*(-4) + 11 = 16 + 11 = 27
y = 12*(-4) + 75 = -48 + 75 = 27
(-4;27)
давайте решим два линейных неравенства 1) 5(3x - 5) > 3(1 + 5x) - 10, 2) 5(4x - 1) < 5(2x + 3) + 2x используя тождественные преобразования.
давайте начнем с открытия скобок в обеих частях неравенства:
1) 5(3x - 5) > 3(1 + 5x) - 10;
5 * 3x - 5 * 5 > 3 * 1 + 3 * 5x - 10;
15x - 25 > 3 + 15x - 10;
группируем подобные в разных частях неравенства:
15x - 15x > 3 - 10 + 25;
x(15 - 15) > 18;
0 > 18.
неравенство не верное, значит нет решения неравенства.
2) 5(4x - 1) < 5(2x + 3) + 2x;
20x - 5 < 10x + 15 + 2x;
20x - 10x - 2x < 15 + 5;
8x < 20;
x < 20 : 8;
x < 2.5.
x принадлежит промежутку (- бесконечность; 2,5).