Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Показать больше
Показать меньше
daniilkrkrahmal
31.12.2022 20:00 •
Алгебра
Докажите что: 1)17^n -1 кратно 16 2)23^2n+1 +1кратно 24 3)13^2n+1 +1 кратно 14
Показать ответ
Ответ:
halker249Neekolay
07.10.2020 22:34
Доказательство проведем индукцией по n.
1) 17ⁿ - 1 кратно 16. При n = 1 кратность подтверждается: 17 - 1 = 16. Пусть кратность 16-ти сохраняется при произвольном n. Докажем, что она подтверждается и при n + 1. 17ⁿ⁺¹ - 1 = 17*17ⁿ + 1. Составим разность: 17ⁿ⁺¹ - 1 - (17ⁿ - 1) = 17ⁿ⁺¹ - 1 - 17ⁿ + 1 = 17*17ⁿ - 17ⁿ = 17ⁿ(17 - 1) = 16*17ⁿ. Получили, что разность 17ⁿ⁺¹ - 1 - (17ⁿ - 1) кратна 16. Т.к. слагаемое 17ⁿ - 1 также кратно 16 по предположению индукции, то и слагаемое 17ⁿ⁺¹ - 1 кратно 16, следовательно кратность доказана.
2) 23²ⁿ⁺¹ + 1 кратно 24. При n = 1 кратность подтверждается: 23³ + 1 = 12167 + 1 = 12168 = 24*507. Полагая, что имеет место кратность 23²ⁿ⁺¹ + 1 двадцати четырем, покажем, что и при n + 1 кратность подтверждается. 23²⁽ⁿ⁺¹⁾⁺¹ + 1 = 23²ⁿ⁺³ + 1. Составляем разность 23²ⁿ⁺³ + 1 - (23²ⁿ⁺¹ + 1) = 23²ⁿ⁺³ + 1 - 23²ⁿ⁺¹ - 1 = 23²ⁿ⁺¹*23² - 23²ⁿ⁺¹ = 23²ⁿ⁺¹(23² - 1) = 23²ⁿ⁺¹(23 - 1)(23 + 1)=22*24*23²ⁿ⁺¹. Видим, что эта разность кратна 24. Т. к. слагаемое 23²ⁿ⁺¹ + 1 кратно 24 по предположению индукции, то и 23²ⁿ⁺³ + 1 кратно 24, тем самым кратность доказана.
3) 13²ⁿ⁺¹ + 1 кратно 14. Действуя как в предыдущем пункте, получаем: при n = 1, 13³ + 1 = 2197 + 1 = 2198 = 14*157. Полагаем, что 13²ⁿ⁺¹ + 1 кратно 14 и доказываем кратность четырнадцати при n + 1. 13²⁽ⁿ⁺¹⁾⁺¹ + 1 = 13²ⁿ⁺³ + 1. Составляем разность 13²ⁿ⁺³ + 1 - (13²ⁿ⁺¹ + 1) = 13²ⁿ⁺³ - 13²ⁿ⁺¹ = 13²*13²ⁿ⁺¹ - 13²ⁿ⁺¹ = 13²ⁿ⁺¹(13² - 1) = 13²ⁿ⁺¹(13 - 1)(13 + 1) = 12*14*13²ⁿ⁺¹. Разность кратна 14, т. к. по предположению 13²ⁿ⁺¹ + 1 кратно 14, то и 13²ⁿ⁺³ + 1 кратно 14. Кратность доказана.
0,0
(0 оценок)
Популярные вопросы: Алгебра
sonyabush12345
17.11.2022 22:50
Представьте выражение в виде произведения . 3x(a+b)+y(a+b) -- 3xa+3xb+ya+yb напомните,,что мне делать дальше,чтобы получить (b+a)(y+3x)...
rootme
17.11.2022 22:50
Вычислите значение выражения sin 75 sin 43-sin 15 sin 47/-2sin 14 cos 14...
anhelinayeremenko30
17.11.2022 22:50
Решить тригонометрическое уравнение 5sin2x-1=2cos^2*2x...
gritana
17.11.2022 22:50
На графике функции у=2 корень из 3-х найдите абсциссу точки в которой касательная образует с положительным направлением оси абсцисс угол 135...
slaider1123
02.02.2022 11:20
Выражение cos3acos4a-sin(п\2+a)+sin4asin3a...
88арина99
02.02.2022 11:20
Найдиие множество значений функций y=6sin(x-2)...
66666666ak
02.02.2022 11:20
Найдите все значения параметра p при котором прямая y=3-p и график функции y=ctg2x+sinx имеют хотя бы одну общую точку...
Пездюк1
28.11.2020 20:05
Если х-у=2 и х*у=3, то наидите значение выражения yx⁴-xy⁴...
ЯестьПаша
28.11.2020 20:05
Можно ли занумеровать ребра куба числами от 1 до 12 так, чтобы для каждой вершины куба сумма номеров ребер, выходящих из этой вершины, была одинаковой?...
pMatbq
28.11.2020 20:05
Номер 10 вкладчик положил в банк а рублей. через год его вклад увеличился на b рублей. какой процент p от вклада начисляет банк ежегодно? выразите переменную p через a и b. найдите...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
1) 17ⁿ - 1 кратно 16. При n = 1 кратность подтверждается: 17 - 1 = 16. Пусть кратность 16-ти сохраняется при произвольном n. Докажем, что она подтверждается и при n + 1. 17ⁿ⁺¹ - 1 = 17*17ⁿ + 1. Составим разность: 17ⁿ⁺¹ - 1 - (17ⁿ - 1) = 17ⁿ⁺¹ - 1 - 17ⁿ + 1 = 17*17ⁿ - 17ⁿ = 17ⁿ(17 - 1) = 16*17ⁿ. Получили, что разность 17ⁿ⁺¹ - 1 - (17ⁿ - 1) кратна 16. Т.к. слагаемое 17ⁿ - 1 также кратно 16 по предположению индукции, то и слагаемое 17ⁿ⁺¹ - 1 кратно 16, следовательно кратность доказана.
2) 23²ⁿ⁺¹ + 1 кратно 24. При n = 1 кратность подтверждается: 23³ + 1 = 12167 + 1 = 12168 = 24*507. Полагая, что имеет место кратность 23²ⁿ⁺¹ + 1 двадцати четырем, покажем, что и при n + 1 кратность подтверждается. 23²⁽ⁿ⁺¹⁾⁺¹ + 1 = 23²ⁿ⁺³ + 1. Составляем разность 23²ⁿ⁺³ + 1 - (23²ⁿ⁺¹ + 1) = 23²ⁿ⁺³ + 1 - 23²ⁿ⁺¹ - 1 = 23²ⁿ⁺¹*23² - 23²ⁿ⁺¹ = 23²ⁿ⁺¹(23² - 1) = 23²ⁿ⁺¹(23 - 1)(23 + 1)=22*24*23²ⁿ⁺¹. Видим, что эта разность кратна 24. Т. к. слагаемое 23²ⁿ⁺¹ + 1 кратно 24 по предположению индукции, то и 23²ⁿ⁺³ + 1 кратно 24, тем самым кратность доказана.
3) 13²ⁿ⁺¹ + 1 кратно 14. Действуя как в предыдущем пункте, получаем: при n = 1, 13³ + 1 = 2197 + 1 = 2198 = 14*157. Полагаем, что 13²ⁿ⁺¹ + 1 кратно 14 и доказываем кратность четырнадцати при n + 1. 13²⁽ⁿ⁺¹⁾⁺¹ + 1 = 13²ⁿ⁺³ + 1. Составляем разность 13²ⁿ⁺³ + 1 - (13²ⁿ⁺¹ + 1) = 13²ⁿ⁺³ - 13²ⁿ⁺¹ = 13²*13²ⁿ⁺¹ - 13²ⁿ⁺¹ = 13²ⁿ⁺¹(13² - 1) = 13²ⁿ⁺¹(13 - 1)(13 + 1) = 12*14*13²ⁿ⁺¹. Разность кратна 14, т. к. по предположению 13²ⁿ⁺¹ + 1 кратно 14, то и 13²ⁿ⁺³ + 1 кратно 14. Кратность доказана.