В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
двоишник55
двоишник55
01.11.2022 14:47 •  Алгебра

Докажите, что число n^3 −n делится на 12 при всех целых n.

Показать ответ
Ответ:
2806171
2806171
11.08.2020 11:21

36 км/ч

Объяснение:

Пусть х км/ч - начальная скорость автобуса, тогда 120/х - это время, в течение которого автобус преодолел первую половину пути.

Если бы автобус двигался по расписанию, то и вторую часть пути он преодолел бы за то же самое время 120/х. Но так как автобус сделал 20-минутную остановку, то он должен был увеличить скорость до (х + 4) км/ч, чтобы компенсировать оставание от расписание, которое составило:

20 : 60 = 1/3 часа.

Составляем уравнением и находим х:

120/х = 120/(х+4) + 1/3

360/х = 360/(х+4) + 1

360(х+4) = 360х + х²+4х

х²+4х-1440=0

Корни приведённого квадратного уравнения:

х₁,₂ = - 2± √(2²+1440)

х₁,₂ = - 2± √1444 = - 2 ± 38.

Отрицательный корень отбрасываем.

х = -2+38 = 36 км/ч

ответ: 36 км/ч

0,0(0 оценок)
Ответ:
GromOverzhec123447
GromOverzhec123447
24.03.2021 14:00
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота