Если число а делится на 13 с остатком 10, то его можно представить в виде . Если число b при делении на 13 даёт остаток 8, то его можно представить в виде . Найдём произведение этих чисел:
Каждое слагаемое в правой части равенства, кроме последнего, делится на 13 нацело, т.к. представляет из себя произведение , одним из множителей которого является 13. Поэтому остаток от деления на 13 числа ab зависит от последнего слагаемого. Последнее слагаемое - 80 не делится нацело на 13: 80=13·6+2 . Оно представляет из себя произведение остатков 10·8 и даёт остаток от деления на 13 число 2. Поэтому при делении ab на 13 можно проверить только, какой остаток при делении на 13 даёт произведение остатков 10·8 . ответ: остаток 2.
это означает, что ab делится на 13 с остатком 2. И зависит остаток , как видно , от остатка при делении числа 80 на 13,то есть от произведения остатков исходных чисел. Итак, остаток от деления ab на 13 равен 2 и остаток от деления 80 (произведения остатков) на 13 равно 2. Остатки равны, значит можно проверять на делимость только 80 (произведение остатков).
2x^2 - 5x + 1 >= 0
D = 5^2 - 4*2*1 = 25 - 8 = 17
x1 = (5-√17)/4 ~ 0,22; x2 = (5+√17)/4 ~ 2,28
x ∈ (-oo; (5-√17)/4] U [(5+√17)/4; +oo)
x^2 - 2x - 1 >= 0
D = 2^2 - 4*1(-1) = 4 + 4 = 8
x3 = (2 - 2√2)/2 = 1-√2 ~ -0,414; x4 = 1+√2 ~ 2,414
x ∈ (-oo; 1-√2] U [1+√2; +oo)
Так как x3 < x1 и x4 > x2, то
x ∈ (-oo; 1-√2] U [1+√2; +oo)
2) Решаем само уравнение. Возводим в квадрат обе части.
2x^2 - 5x + 1 = x^2 - 2x - 1
x^2 - 3x + 2 = 0
(x - 2)(x - 1) = 0
x1 = 2 - не подходит по Области определения.
x2 = 1 - не подходит по Области определения.
Решений нет.
Если число b при делении на 13 даёт остаток 8, то его можно
представить в виде .
Найдём произведение этих чисел:
Каждое слагаемое в правой части равенства, кроме последнего,
делится на 13 нацело, т.к. представляет из себя произведение ,
одним из множителей которого является 13. Поэтому остаток от
деления на 13 числа ab зависит от последнего слагаемого.
Последнее слагаемое - 80 не делится нацело на 13: 80=13·6+2 .
Оно представляет из себя произведение остатков 10·8 и даёт
остаток от деления на 13 число 2.
Поэтому при делении ab на 13 можно проверить только, какой остаток при делении на 13 даёт произведение остатков 10·8 .
ответ: остаток 2.
это означает, что ab делится на 13 с остатком 2. И зависит остаток , как видно , от остатка при делении числа 80 на 13,то есть от произведения остатков исходных чисел.
Итак, остаток от деления ab на 13 равен 2 и остаток от деления 80 (произведения остатков) на 13 равно 2. Остатки равны, значит можно проверять на делимость только 80 (произведение остатков).