В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Ембергенова
Ембергенова
29.11.2021 23:20 •  Алгебра

Докажите, что если для целых чисел x, y число x^2+3xy+y^2 делится на 25, то x и y делятся на 5. , с решением

Показать ответ
Ответ:
LizaLove200468
LizaLove200468
04.10.2020 05:48
Пусть x²+3xy+y²=25k, где k - некоторое целое число. Тогда это уравнение можно переписать как (2х+3y)²-5y²=100k или (2х+3y)²=5(20k+y²). Отсюда видно, что (2х+3y)² делится на 5, а значит и 2х+3y делится на 5, т.е. 2х+3y=5n при некотором целом n. Тогда уравнение имеет вид 25n²-5y²=100k, т.е. 5n²-y²=20k, откуда опять следует, что y² делится на 5, т.е. у делится на 5. Отсюда и из соотношения 2х+3y=5n cледует, что 2х делится на 5, т.е. и х делится на 5.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота