Запишем простое число p в виде p=6q+m, где m принимает одно из значений от 0 до 5. Поскольку p>3 и p простое, m может принимать только значения 1 и 5 (если m=0, 2 или 4, то p делится на 2, если m=3, то p делится на 3). Если m=5, то p=6q+5=6(q+1)-1. Поэтому в любом случае p или на 1 больше числа, делящегося на 6, или на 1 меньше числа, делящегося на 6. Поэтому
что и требовалось доказать.