Докажите, что в данной строке представлены две группы математический объектов. Для этого проклассифицируйте их. Запишите обоснование вывода. Также рассмотрите ещё раз представленные представленные математические объекты и проклассифицируйте их на две другие группы. Запишите обоснование вывода. ОБЯЗАТЕЛЬНО СДЕЛАЙТЕ ВЫВОД В ДВУХ ЭТИХ СЛУЧАЯХ! Всё дано на фотографии.
Пусть х км расстояние, которое проехал велосипедист до встречи. Тогда мотоциклист проехал до встречи (80 - х) км. Так как велосипедист приехал в В через 3 часа после встречи, то он проехал расстояние (80 - х) км за 3 часа, а значит его скорость (80 - х)/3 (км/ч). Мотоциклист же расстояние х км проехал за 1 ч.20мин., т.е. за 4/3 часа, поэтому его скорость х: 4/3 = 3х/4 (км/ч). Так как до встречи они затратили одинаковое время, то можно составить уравнение:
Так как за х мы брали расстояние от А до места встречи, то х = 32 (км).
ответ: На расстоянии 32 километра от пункта А произошла встреча.
1. (2-5х) * (х-6) * (3х+2) * (5х-6)<0,ниже пойдут x при которых всё удёт в 0
x=2/5 x=6 x=-2/3 x=6/5
+ +
(-2/3)2/56/56x
- - -
x( - бесконечность;-2/5) \/ (2/5;6/5) \/ (6; + бесконечности)
2. y=-7-3x
x^2-(-7-3x)^2+49=-9x(-7-3x)
x^2-49-42x-9x^2+49-63x-27x^2=0
35x^2+105x=0
35x(x+3)=0
x=0 или x=-3
y=-7 y=-2
ответ: (0;-7) и (-3;-2)
Пусть х км расстояние, которое проехал велосипедист до встречи. Тогда мотоциклист проехал до встречи (80 - х) км. Так как велосипедист приехал в В через 3 часа после встречи, то он проехал расстояние (80 - х) км за 3 часа, а значит его скорость (80 - х)/3 (км/ч). Мотоциклист же расстояние х км проехал за 1 ч.20мин., т.е. за 4/3 часа, поэтому его скорость х: 4/3 = 3х/4 (км/ч). Так как до встречи они затратили одинаковое время, то можно составить уравнение:
Так как за х мы брали расстояние от А до места встречи, то х = 32 (км).
ответ: На расстоянии 32 километра от пункта А произошла встреча.