При делении на 10 числа 21, 22 и 23 дают остатки 1, 2 и 3. 1^11 = 1 и число 21^11 оканчивается на 1. Степени двойки и тройки повторяются через каждые 4 шага (2, 4, 8, 16, 32 и 3, 9, 27, 81, 243). 12/4 = 3, поэтому 2^12 оканчивается на 6, так же, как и число 22^12. 13/4 = 3*4 +1, поэтому 3^13 оканчивается на 3, так же, как и число 23^13. Сумма остатков является числом, оканчивающимся на 1+6+3 = 10, т. е. на 0, а такое число кратно 10, следовательно все число 21^11+22^12+23^13 = 10k + 10, где k - натуральное, кратно 10.