Наречия на -о (-е), образованные от качественных имен прилагательных, имеют две степени сравнения: сравнительную и превосходную.
Сравнительная степень наречий имеет две формы и составную форма сравнительной степени образуется с суффиксов -ее (-ей), -е, -ше от исходной формы наречий, от которой отбрасываются конечные -о (-е), -ко.
Составная форма сравнительной степени наречий образуется путем сочетания наречий и слов более и менее.
Превосходная степень наречий имеет, как правило, составную форму, которая представляет собой сочетание двух слов — сравнительной степени наречия и местоимения всех (всего).
N, n+1, n+2 - три последовательных натуральных числа n+(n+1)+(n+2)=3n+3=3(n+1) Т.к. один из множителей произведения равен 3, то всё произведение делится на 3.
n(n+1)(n+2) Воспользуемся признаком делимости на 6: На 6 делятся числа, которые одновременно делятся и на 2 и на 3. Из трёх последовательных натуральных чисел всегда найдётся не менее одного чётного, т.е. делящегося на 2. На 3 делится каждое третье натуральное число, следовательно, из трёх последовательных множителей обязательно будет один, делящийся на 3. Получаем, что в произведении n(n+1)(n+2) один из множителей делится на 2, а другой на 3, значит всё произведение делится на 6.
Наречия на -о (-е), образованные от качественных имен прилагательных, имеют две степени сравнения: сравнительную и превосходную.
Сравнительная степень наречий имеет две формы и составную форма сравнительной степени образуется с суффиксов -ее (-ей), -е, -ше от исходной формы наречий, от которой отбрасываются конечные -о (-е), -ко.
Составная форма сравнительной степени наречий образуется путем сочетания наречий и слов более и менее.
Превосходная степень наречий имеет, как правило, составную форму, которая представляет собой сочетание двух слов — сравнительной степени наречия и местоимения всех (всего).
n+(n+1)+(n+2)=3n+3=3(n+1)
Т.к. один из множителей произведения равен 3, то всё произведение делится на 3.
n(n+1)(n+2)
Воспользуемся признаком делимости на 6: На 6 делятся числа, которые одновременно делятся и на 2 и на 3.
Из трёх последовательных натуральных чисел всегда найдётся не менее одного чётного, т.е. делящегося на 2.
На 3 делится каждое третье натуральное число, следовательно, из трёх последовательных множителей обязательно будет один, делящийся на 3.
Получаем, что в произведении n(n+1)(n+2) один из множителей делится на 2, а другой на 3, значит всё произведение делится на 6.