Область значения функции - это множество, которое может принимать y
1) y = x² - 3x.
График - парабола. Так как ветви вверх, то минимальное значение находится в вершине.
y = -D/4a, где D = b² - 4ac
D = 9 - 4 * 1 * 0 = 9 - 0 = 9
y(min) = -9/4 = -2.25
Значит, множество значений y: [-2.25; +∞)
б) y = √x
Так как корень из числа - число неотрицательное, то множество значений такой функции равно y: [0; +∞)
в) y = 2/x
График - гипербола, ветви которых расположены в I и III четвертях. Данная функция имеет точку разрыва второго рода в точке x = 0, где стремится к -∞ слева, а к +∞ справа. Таким образом, множество значений этой функции y = (-∞; 0) ∪ (0;+∞)
г) y = √(x²) = |x|.
Модуль - функция неотрицательная, таким образом, ее область значений такая же, как и в пункте б)
y ⊂ [0; +∞)
д) y = 1/(2x-3)
Точно такая же гипербола, как и в пункте в)
Объяснение такое же:
y ⊂ (-∞; 0) ∪ (0; +∞)
е) y = 2x^4 + 3x² + 1
Выполним замену x² = t, получим:
y(t) = 2t² + 3t + 1.
Снова парабола, ветви вверх, значит, минимальное значение в вершине. Подробнее я расписал пункт а)
в данном методе нужно сложить левые части обоих уравнений и приравнять к сумме правых частей:
(5х - 4у) + (7х + 4у) = 22 + 2, 5х - 4у + 7х + 4у = 24 - как видим -4у и +4у сокращаются, так как их сумма равна 0 и получаем упрощенное уравнение, 5х + 7х = 24, 12х = 24, х = 2, теперь из любого из уравнений выделяем у: если из 1 ур-ия: у = (5х - 22) : 4 = (5*2 - 22) : 4 = -3, или если из 2 ур-ия: у = (2 - 7х) : 4 = (2 - 7*2) : 4 = -3 (как видим результат у одинаков).
Объяснение:
Область значения функции - это множество, которое может принимать y
1) y = x² - 3x.
График - парабола. Так как ветви вверх, то минимальное значение находится в вершине.
y = -D/4a, где D = b² - 4ac
D = 9 - 4 * 1 * 0 = 9 - 0 = 9
y(min) = -9/4 = -2.25
Значит, множество значений y: [-2.25; +∞)
б) y = √x
Так как корень из числа - число неотрицательное, то множество значений такой функции равно y: [0; +∞)
в) y = 2/x
График - гипербола, ветви которых расположены в I и III четвертях. Данная функция имеет точку разрыва второго рода в точке x = 0, где стремится к -∞ слева, а к +∞ справа. Таким образом, множество значений этой функции y = (-∞; 0) ∪ (0;+∞)
г) y = √(x²) = |x|.
Модуль - функция неотрицательная, таким образом, ее область значений такая же, как и в пункте б)
y ⊂ [0; +∞)
д) y = 1/(2x-3)
Точно такая же гипербола, как и в пункте в)
Объяснение такое же:
y ⊂ (-∞; 0) ∪ (0; +∞)
е) y = 2x^4 + 3x² + 1
Выполним замену x² = t, получим:
y(t) = 2t² + 3t + 1.
Снова парабола, ветви вверх, значит, минимальное значение в вершине. Подробнее я расписал пункт а)
y = -D/4a; D = b² - 4ac = 1
y = -1/4 = -0.25
y ⊂ [-0.25; +∞)
║ 7x+4y=2,
метод сложения:
в данном методе нужно сложить левые части обоих уравнений и приравнять к сумме правых частей:
(5х - 4у) + (7х + 4у) = 22 + 2,
5х - 4у + 7х + 4у = 24 - как видим -4у и +4у сокращаются, так как их сумма равна 0 и получаем упрощенное уравнение,
5х + 7х = 24,
12х = 24,
х = 2,
теперь из любого из уравнений выделяем у:
если из 1 ур-ия: у = (5х - 22) : 4 = (5*2 - 22) : 4 = -3, или
если из 2 ур-ия: у = (2 - 7х) : 4 = (2 - 7*2) : 4 = -3 (как видим результат у одинаков).
ответ: (2; -3)