Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
Задачи решаются по формуле полной вероятности и формуле Байеса.
а) Событие А - взятое из второй партии изделие оказалось бракованным - может произойти совместно с одним из двух событий H1 и H2, называемых гипотезами:
H1 - из первой партии во вторую переложили не бракованное изделие;
H2 - бракованное изделие.
Тогда A=H1*A+H2*A, и так как события H1 и H2 несовместны, то p(A)=p(H1)*p(A/H1)+p(H2)*p(A/H2). И так как p(H1)=11/12, p(H2)=1/12, p(A/H1)=1/11, p(A/H2)=2/11, то p(A)=11/12*1/11+1/12*2/11=13/132.
б) Здесь нужно найти условную вероятность p(H2/A). По формуле Байеса, p(H2/A)=p(H2)*p(A/H2)/p(A)=1/12*2/11/(13/132)=2/13.
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)
ответ: а) 13/132; б) 2/13.
Объяснение:
Задачи решаются по формуле полной вероятности и формуле Байеса.
а) Событие А - взятое из второй партии изделие оказалось бракованным - может произойти совместно с одним из двух событий H1 и H2, называемых гипотезами:
H1 - из первой партии во вторую переложили не бракованное изделие;
H2 - бракованное изделие.
Тогда A=H1*A+H2*A, и так как события H1 и H2 несовместны, то p(A)=p(H1)*p(A/H1)+p(H2)*p(A/H2). И так как p(H1)=11/12, p(H2)=1/12, p(A/H1)=1/11, p(A/H2)=2/11, то p(A)=11/12*1/11+1/12*2/11=13/132.
б) Здесь нужно найти условную вероятность p(H2/A). По формуле Байеса, p(H2/A)=p(H2)*p(A/H2)/p(A)=1/12*2/11/(13/132)=2/13.