Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
Відповідь:
0.32
Пояснення:
Рисунок : квадрат 3×3 ; S□=9 всевозможние пари чисел (х, у). которие принимают значения от [-1; 2]
х+у>1 дает значения в етом квадрате више прямой у=1-х
ух<1 дает область под гиперболой
найдем пересечение гиперболи с квадратом у=2, имеем х=0.5
Тогда площадь под гиперболой S=∫_0.5^2 1/х dx= ln x |_0.5^2=ln 2- ln0.5=1.386.
∫_0.5^2 - Интеграл от 0,5 до 2
Область пар (х,у) можна разбить на 3 области:
хє[-1; 1/2] треугольник, ограничений прямой х+у>1 и сторонами квадрата,
хє(1; 2] - область под гиперболой и еще треугольник, ограничений прямой х+у>1 и прямой у=0, для ує[-1;0]
S△=1/2×(1.5)^2=1.125 для хє[-1; 1/2] & ує[ 1/2;2]
S◁=1/2×1×1=1/2=0.5 для хє[1; 2] & ує[-1;0]
S▽=1/2×(0.5)^2=0.125 треугольник под прямой х+у=1, которий вошел в площу гиперболи, его нужно отнять
для хє[1/2; 1] & ує[1/2;1]
Тогда
P=(S△+S◁+S-S▽)/S□=(1.125+0.5+1.386-0.125)/9=0.32
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
Відповідь:
0.32
Пояснення:
Рисунок : квадрат 3×3 ; S□=9 всевозможние пари чисел (х, у). которие принимают значения от [-1; 2]
х+у>1 дает значения в етом квадрате више прямой у=1-х
ух<1 дает область под гиперболой
найдем пересечение гиперболи с квадратом у=2, имеем х=0.5
Тогда площадь под гиперболой S=∫_0.5^2 1/х dx= ln x |_0.5^2=ln 2- ln0.5=1.386.
∫_0.5^2 - Интеграл от 0,5 до 2
Область пар (х,у) можна разбить на 3 области:
хє[-1; 1/2] треугольник, ограничений прямой х+у>1 и сторонами квадрата,
хє(1; 2] - область под гиперболой и еще треугольник, ограничений прямой х+у>1 и прямой у=0, для ує[-1;0]
S△=1/2×(1.5)^2=1.125 для хє[-1; 1/2] & ує[ 1/2;2]
S◁=1/2×1×1=1/2=0.5 для хє[1; 2] & ує[-1;0]
S▽=1/2×(0.5)^2=0.125 треугольник под прямой х+у=1, которий вошел в площу гиперболи, его нужно отнять
для хє[1/2; 1] & ує[1/2;1]
Тогда
P=(S△+S◁+S-S▽)/S□=(1.125+0.5+1.386-0.125)/9=0.32