а) P(x) = 7·x² - 5·x + 3 и Q(x) = 7·x² - 5
P(x) + Q(x) = 7·x² - 5·x + 3 + 7·x² - 5 = 14·x² - 5·x - 2;
P(x) - Q(x) = 7·x² - 5·x + 3 - (7·x² - 5) = 7·x² - 5·x + 3 - 7·x² + 5 = - 9·x + 8.
б) P(x) = 3·x + 1 и Q(x) = -3·x² - 3·x + 1
P(x) + Q(x) = 3·x + 1 + (-3·x² - 3·x + 1) = 3·x + 1 - 3·x² - 3·x + 1 = - 3·x² + 2;
P(x) - Q(x) = 3·x + 1 - (-3·x² - 3·x + 1) = 3·x + 1 + 3·x² + 3·x - 1 = 3·x² + 6·x.
2. Упростите выражение:
(8·c² + 3·c) + (-7·c² - 11·c + 3) - (-3·c² - 4) = 8·c² + 3·c - 7·c² - 11·c + 3 + 3·c² + 4 =
= 8·c² - 7·c² + 3·c² + 3·c - 11·c + 3 + 4 = 4·c² - 8·c + 7.
3. Решите уравнение:
(3 - 5,8·x) - (2,2·x + 3) = 16
3 - 5,8·x - 2,2·x - 3 = 16
8·x = 16
x = 16:8 = 2.
4. Преобразуйте в многочлен стандартного вида:
А. (1 + 3·x) + (2·x - 4·x²) = 1 + 3·x + 2·x - 4·x² = - 4·x² + 5·x + 1;
Б. (2·a - 1) - (3·a² + 4) = 2·a - 1 - 3·a² - 4 = - 3·a² + 2·a - 5;
В. (12·x - 8) + (3·x + 8·x² - 2) = 12·x - 8 + 3·x + 8·x² - 2 = 8·x² + 15·x - 10;
Г. (2·x - 1) - (5·x + 44 - 7·x²) = 2·x - 1 - 5·x - 44 + 7·x² = 7·x² - 3·x - 45.
№1
2) -6 + 4 = -2
3) 6x4 - 30x2 + 36x
4) 12x2 + 4x - 40
5) 2y3 + 8y2 - 2y - 24
№2
1) m(-24 * 5m)
2) -2a2 + 25a - 41
№3
1) (x2 - 3)(x3 + 4)
2) (3x - 4)(9x2 + 2)
№4
При х = 1 и у = 0,45 равно - 4,7
№5
1) x₁ = 0, x₂ = - 1/2
2) x₁ = 0, x₂ = 7
Объяснение:
2) (7x2 - 6x - 6) - (7x2 - 6x - 4) = -6x - 6 + 6x + 4 = -6 + 4 = -2
3) 6x * (x3 - 5x + 6) = 6x4 - 6x * 5x + 6x * 6 = 6x4 - 30x2 + 6x * 6 = 6x4 - 30x2 + 36x
4) (3х – 5)(4х + 8) = 12x2 + 24x - 20x - 40 = 12x2 + 4x - 40
5) (2у + 6)(у2 + у - 4) = 2y3 + 2y2 - 8y + 6y2 + 6y - 24 = 2y3 + 8y2 - 2y - 24
1) 3m(2 + 5m) – 5m(6 + 2m) = m(6 + 15 - 30 - 10m) = m(-24 + 15m - 10m) = m(-24 * 5m)
2) 4(3a - 5) – (a – 3)(2a – 7) = 12a-20-(2a2 - 7a - 6a + 21) = 12a - 20 - 2a2 +13a - 21 = 25a - 41 - 2a2 = -2a2 + 25a - 41
№3 (по формуле x2-3)
1) х5 - 3х3 + 4х2 - 12 = (x2 - 3)(x3 + 4)
2) 27х3 - 36х2 + 6х - 8 = (3x - 4)(9x2 + 2)
18ху + 6х – 24у – 8 при х = 1 и у = 0,45
18ху + 6х – 24у – 8 = 2(3x*(3y+1) - 4(3y+1)) = 2(3y+1)(3x-4)
Если x = 1, y = 0,45, то 2(3*0,45+1)(3*1-4) = - 4,7
1) 12х2 + 6х = 0
6x(2x+1) = 0
x(2x+1) = 0
x = 0
2x + 1 = 0
x = - 1/2
ответ: x₁ = 0, x₂ = - 1/2
2) 35х - 5х2 = 0
5x(7-x) = 0
x(7-x) = 0
7 - x = 0
x = 7
ответ: x₁ = 0, x₂ = 7
а) P(x) = 7·x² - 5·x + 3 и Q(x) = 7·x² - 5
P(x) + Q(x) = 7·x² - 5·x + 3 + 7·x² - 5 = 14·x² - 5·x - 2;
P(x) - Q(x) = 7·x² - 5·x + 3 - (7·x² - 5) = 7·x² - 5·x + 3 - 7·x² + 5 = - 9·x + 8.
б) P(x) = 3·x + 1 и Q(x) = -3·x² - 3·x + 1
P(x) + Q(x) = 3·x + 1 + (-3·x² - 3·x + 1) = 3·x + 1 - 3·x² - 3·x + 1 = - 3·x² + 2;
P(x) - Q(x) = 3·x + 1 - (-3·x² - 3·x + 1) = 3·x + 1 + 3·x² + 3·x - 1 = 3·x² + 6·x.
2. Упростите выражение:
(8·c² + 3·c) + (-7·c² - 11·c + 3) - (-3·c² - 4) = 8·c² + 3·c - 7·c² - 11·c + 3 + 3·c² + 4 =
= 8·c² - 7·c² + 3·c² + 3·c - 11·c + 3 + 4 = 4·c² - 8·c + 7.
3. Решите уравнение:
(3 - 5,8·x) - (2,2·x + 3) = 16
3 - 5,8·x - 2,2·x - 3 = 16
8·x = 16
x = 16:8 = 2.
4. Преобразуйте в многочлен стандартного вида:
А. (1 + 3·x) + (2·x - 4·x²) = 1 + 3·x + 2·x - 4·x² = - 4·x² + 5·x + 1;
Б. (2·a - 1) - (3·a² + 4) = 2·a - 1 - 3·a² - 4 = - 3·a² + 2·a - 5;
В. (12·x - 8) + (3·x + 8·x² - 2) = 12·x - 8 + 3·x + 8·x² - 2 = 8·x² + 15·x - 10;
Г. (2·x - 1) - (5·x + 44 - 7·x²) = 2·x - 1 - 5·x - 44 + 7·x² = 7·x² - 3·x - 45.
№1
2) -6 + 4 = -2
3) 6x4 - 30x2 + 36x
4) 12x2 + 4x - 40
5) 2y3 + 8y2 - 2y - 24
№2
1) m(-24 * 5m)
2) -2a2 + 25a - 41
№3
1) (x2 - 3)(x3 + 4)
2) (3x - 4)(9x2 + 2)
№4
При х = 1 и у = 0,45 равно - 4,7
№5
1) x₁ = 0, x₂ = - 1/2
2) x₁ = 0, x₂ = 7
Объяснение:
№1
2) (7x2 - 6x - 6) - (7x2 - 6x - 4) = -6x - 6 + 6x + 4 = -6 + 4 = -2
3) 6x * (x3 - 5x + 6) = 6x4 - 6x * 5x + 6x * 6 = 6x4 - 30x2 + 6x * 6 = 6x4 - 30x2 + 36x
4) (3х – 5)(4х + 8) = 12x2 + 24x - 20x - 40 = 12x2 + 4x - 40
5) (2у + 6)(у2 + у - 4) = 2y3 + 2y2 - 8y + 6y2 + 6y - 24 = 2y3 + 8y2 - 2y - 24
№2
1) 3m(2 + 5m) – 5m(6 + 2m) = m(6 + 15 - 30 - 10m) = m(-24 + 15m - 10m) = m(-24 * 5m)
2) 4(3a - 5) – (a – 3)(2a – 7) = 12a-20-(2a2 - 7a - 6a + 21) = 12a - 20 - 2a2 +13a - 21 = 25a - 41 - 2a2 = -2a2 + 25a - 41
№3 (по формуле x2-3)
1) х5 - 3х3 + 4х2 - 12 = (x2 - 3)(x3 + 4)
2) 27х3 - 36х2 + 6х - 8 = (3x - 4)(9x2 + 2)
№4
18ху + 6х – 24у – 8 при х = 1 и у = 0,45
18ху + 6х – 24у – 8 = 2(3x*(3y+1) - 4(3y+1)) = 2(3y+1)(3x-4)
Если x = 1, y = 0,45, то 2(3*0,45+1)(3*1-4) = - 4,7
№5
1) 12х2 + 6х = 0
6x(2x+1) = 0
x(2x+1) = 0
x = 0
2x + 1 = 0
x = 0
x = - 1/2
ответ: x₁ = 0, x₂ = - 1/2
2) 35х - 5х2 = 0
5x(7-x) = 0
x(7-x) = 0
x = 0
7 - x = 0
x = 0
x = 7
ответ: x₁ = 0, x₂ = 7