Р (0)=q=0,5 - остановился перед первым же светофором
Р (1)=q*р=0,5*0,5 - первый остановился перед вторым
Р (2)=0,5*0,5^2 -2 первых остановился перед 3м
Р (6)=р все 6 светофоров без остановки
ЗАДАЧА 2
р=0,7 q=0,3
Х число промахов =(0,1,2,3,4)
0,7
0,3*0,7
0,3*0,3*0,7
0,3*0,3*0,3*0,7
0,3*0,3*0,3*0,3
сумма=1
МО=1/р D=(1-р) /р^2
ЗАДАЧА 3
Вероятность попадания с 1-го раза и использования только 1 патрона - 0,6.
Чтобы использовать 2-й патрон нужно не попасть с 1-го раза (вероятность 1-0,6 = 0,4) и попасть со 2-го раза (вероятность 0,6). Вероятность такого события 0,4*0,6 = 0,24.
Для использования 3-го патрона нужно не попасть 1-й раз (вероятность 0,4), не попасть 2-й раз (вероятность 0,4) и попасть 3- раз (вероятность 0,6). Вероятность использования 3 патрона 0,4*0,4*0,6 = 0,096.
Аналогично вычисляем вероятность того, что стрелок попадёт в мишень с 4-го раза: 0,4*0,4*0,4*0,6 = 0,0384.
Осталось вычислить вероятность того, что ни один патрон не попадёт в цель: 0,4*0,4*0,4*0,4 = 0,0256.
Использование 4 патронов возможно в 2-х несовместимых случаях: стрелок попадёт в мишень с 4-го раза или 4 раза промахнётся, поэтому вероятность такого события 0,0384+0,0256 = 0,064
Запишем закон распределения СВ в виде таблицы: Х__|___1___|___2___|___3___|___4___| P__|__.0,6__|_.0,24__|_.0,096_|__0,064_|
Стороны прямоугольника : (√х + 3) см и (√х - 6) см.
Площадь прямоугольника : (√х + 3)(√х - 6) см²
Уравнение:
х - (√х + 3)(√х - 6) = 63
х - ((√х)² - 6√х + 3√х - 18 ) = 63
х - ( х - 3√х - 18) = 63
х - х + 3√х + 18 = 63
3√х = 63 - 18
3 * √х = 45
√х = 45 : 3
√х = 15
(√х)² = 15²
х = 225 (см²) площадь квадрата
Проверим:
225 - (√225 + 3)(√225 - 6) = 225 - (15 + 3)(15 - 6) = 225 - 18 * 9 =
= 225 - 162 = 63 (см²) разница в площади.
ответ : 225 см² площадь квадрата.
Х может принимать значения 0,1,2,3,4,5,6
Вероятности ищи по формуле
q*р^(n-1) n=1,2,3,4,5,6
Р (0)=q=0,5 - остановился перед первым же светофором
Р (1)=q*р=0,5*0,5 - первый остановился перед вторым
Р (2)=0,5*0,5^2 -2 первых остановился перед 3м
Р (6)=р все 6 светофоров без остановки
ЗАДАЧА 2р=0,7 q=0,3
Х число промахов =(0,1,2,3,4)
0,7
0,3*0,7
0,3*0,3*0,7
0,3*0,3*0,3*0,7
0,3*0,3*0,3*0,3
сумма=1
МО=1/р D=(1-р) /р^2
ЗАДАЧА 3Вероятность попадания с 1-го раза и использования только 1 патрона - 0,6.
Чтобы использовать 2-й патрон нужно не попасть с 1-го раза (вероятность 1-0,6 = 0,4) и попасть со 2-го раза (вероятность 0,6). Вероятность такого события 0,4*0,6 = 0,24.
Для использования 3-го патрона нужно не попасть 1-й раз (вероятность 0,4), не попасть 2-й раз (вероятность 0,4) и попасть 3- раз (вероятность 0,6). Вероятность использования 3 патрона 0,4*0,4*0,6 = 0,096.
Аналогично вычисляем вероятность того, что стрелок попадёт в мишень с 4-го раза: 0,4*0,4*0,4*0,6 = 0,0384.
Осталось вычислить вероятность того, что ни один патрон не попадёт в цель: 0,4*0,4*0,4*0,4 = 0,0256.
Использование 4 патронов возможно в 2-х несовместимых случаях: стрелок попадёт в мишень с 4-го раза или 4 раза промахнётся, поэтому вероятность такого события 0,0384+0,0256 = 0,064
Запишем закон распределения СВ в виде таблицы: Х__|___1___|___2___|___3___|___4___| P__|__.0,6__|_.0,24__|_.0,096_|__0,064_|