Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Показать больше
Показать меньше
Соломія2203
03.05.2021 13:02 •
Алгебра
Доведіть, що при всіх натуральних значеннях n значення
виразу 5*7^2n+1 +13*25^n кратне 24.
Показать ответ
Ответ:
marychka0783
15.09.2021 09:02
а)sin 2x=√3 cos x
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z
0,0
(0 оценок)
Ответ:
romanchuknina
09.06.2023 21:22
Синус возрастает на [-π/2; π/2], убывает на [π/2; 3π/2]
Косинус возрастает на [0; π], убывает [π; 2π]
sin(-5π/12) - угол лежит в 4 четверти, где синус возрастает
sin(5π/24) - угол лежит в 1 четврети, синус возрастает
sin(17π/6) = sin(π - π/6) = sin(π/6) - угол лежит в 1 четверти, синус возрастает.
Когда функция возрастает, то бОльшему значению аргумента соответствует бОльшее значение функции, значит:
-5π/12 < π/6 < 5π/24
sin(-5π/12) < sin(17π/6) < sin(5π/24)
cos(13π/24) - угол лежит во 2 четверти, косинус возрастает.
Синус смещен относительно косинуса на π/2.
5π/24 < 13π/24
13π/24 + π/2 = 25π/24,
cos(13π/24) = sin(25π/24) = -sin(π/24) = sin(-π/24) > sin(-5π/12)
ответ: sin(-5π/12) < cos(13π/24) < sin(17π/6) < sin(5π/24)
0,0
(0 оценок)
Популярные вопросы: Алгебра
flow789456587
09.07.2020 13:11
РЕБЯТ ИТОГОВАЯ В ЧЕТВЕРТИ НЕБОЛЬШАЯ б...
Masha3334
03.06.2020 09:58
Y^2-10y+25/y^2-25: 10y-50/y^2+5y при y=60...
natalik2038
12.06.2020 08:27
Выполните действия 3/2а-4/5а и (3а^3/8в^2)2...
Blazethecat218
10.08.2021 04:57
Решить систему подстановки...
hudo1
15.08.2021 04:18
Впишите верный ответ. – геометрическая прогрессия. Найдите b4 , если b3 75 и b5 3 . ответ: ....
Danik119200
20.02.2023 05:49
решить Две бригады были заняты на уборке картофеля. Первая бригада за 8 ч. работы убрала картофеля столько же, сколько вторая бригада — за 10 ч. Определи, сколько центнеров...
ZnayNeZnay
19.02.2022 08:29
Как решить 49 в 9 степени умножить на 3 в степени 12 разделить на 147 в 9 степени?...
gavrikov
18.10.2021 18:13
Решите это вообще не рублю...
напарницавМоскве
24.07.2020 08:32
На фирме работают 30 человек. Проведено исследование числа рабочих дней, пропущенных каждым работником в течение месяца:4, 6, 2, 1, 5, 0, 1, 3, 4, 2, 0, 3, 5, 1, 4, 3, 0, 2,...
Neу4
12.03.2023 07:26
На числовой прямой отмечены точки , , . Определи координаты каждой из отмеченных точек, если известно, что ими являются числа: −π/2;−3,3;− √3...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z
Косинус возрастает на [0; π], убывает [π; 2π]
sin(-5π/12) - угол лежит в 4 четверти, где синус возрастает
sin(5π/24) - угол лежит в 1 четврети, синус возрастает
sin(17π/6) = sin(π - π/6) = sin(π/6) - угол лежит в 1 четверти, синус возрастает.
Когда функция возрастает, то бОльшему значению аргумента соответствует бОльшее значение функции, значит:
-5π/12 < π/6 < 5π/24
sin(-5π/12) < sin(17π/6) < sin(5π/24)
cos(13π/24) - угол лежит во 2 четверти, косинус возрастает.
Синус смещен относительно косинуса на π/2.
5π/24 < 13π/24
13π/24 + π/2 = 25π/24,
cos(13π/24) = sin(25π/24) = -sin(π/24) = sin(-π/24) > sin(-5π/12)
ответ: sin(-5π/12) < cos(13π/24) < sin(17π/6) < sin(5π/24)