В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
koskol84p08pdw
koskol84p08pdw
16.02.2020 01:38 •  Алгебра

Два робітники, працюючи разом, можуть виконати завдання за 8 днів. Перший робітник, працюючи один, може виконати роботу в 2 рази швидше, ніж другий. За скільки днів виконає роботу той робітник, який працює швидше?

Показать ответ
Ответ:
kassndra8137
kassndra8137
09.12.2022 22:30
Используем то, что НОД(a,b)*НОК(a,b)=ab. Пусть НОД(a,b)=x. Тогда НОК(a,b)=ab/x. Подставим это в исходное выражение.
ab/x-x=ab/5
Умножим обе части на 5x.
5ab-5x²=abx
ab(5-x)=5x²
ab=(5x²)/(5-x)
Выражение справа должно быть положительным, поэтому 5-x>0. Переберем 4 варианта, чтобы выражение справа было целым.
1) x=1: (5*1²)/(5-1)=5/4 - не целое
2) x=2: (5*2²)/(5-2)=20/3 - не целое
3) x=3: (5*3²)/(5-3)=45/2 - не целое
4) x=4: (5*4²)/(5-4)=80 - подходит
Тогда НОК(a,b)=ab/x=80/4=20, НОД(a,b)=4.
Так как НОД(a,b)=4, то числа a и b представимы в виде 4a' и 4b', где НОД(a',b')=1.
ab=(4a')*(4b')=16*a'b'=80
a'b'=5.
Тогда возможно два варианта:
1) a'=1, b'=5.
a=1*4=4, b=5*4=20
2) a'=5, b'=1
a=5*4=20, b=1*4=4
ответ:(4;20), (20;4).
0,0(0 оценок)
Ответ:
nyanchann
nyanchann
25.10.2020 14:38
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота