Два шкива объединены ремнем . Первый шкив совершает в минуту 560 оборотов , а второй - 240 оборотов . Найдите длину окружности второго шкива , если длина окружности первого шкива равна 0,36 м
a=4>0 ⇒ ветви параболы идут вверх. А значит интервал следующий +;-;+
Решаем данное неравенство как обычное квадратное уравнение
4m²-11m-1=0
D=b²-4c=(-11)²-4×4×7=9
x=(-b±√D)/2a=(11±√9)÷8=7/4 и 1
С учетом интервала +;-;+ и знака больше, мы получаем следующий ответ неравенства
х∈(-∞;1)∪(7/4;∞)
Ищем наименьшее натуральное число удовлетворяющее найденное множество и это число 2. ( Число 1 не может быть ответом, так как он не входит в указаное множество)
Из этого составим неравенство
4m²-8m+3>3m-4
4m²-8m-3m+3>-4
4m²-11m+3>-4
4m²-11m+3+4>0
4m²-11m+7>0
Получаем неравенство типа ax²+bx+c>0
a=4>0 ⇒ ветви параболы идут вверх. А значит интервал следующий +;-;+
Решаем данное неравенство как обычное квадратное уравнение
4m²-11m-1=0
D=b²-4c=(-11)²-4×4×7=9
x=(-b±√D)/2a=(11±√9)÷8=7/4 и 1
С учетом интервала +;-;+ и знака больше, мы получаем следующий ответ неравенства
х∈(-∞;1)∪(7/4;∞)
Ищем наименьшее натуральное число удовлетворяющее найденное множество и это число 2. ( Число 1 не может быть ответом, так как он не входит в указаное множество)
ответ:2
2. По данным рисунка найдите углы треугольника ABC.
∠KBC = 112° => ∠ABC = 180-112 = 68°
∠BCD = 147° => ∠ACB = 180-147 = 33°
∠A = 180-(33+38) = 79°.
3. Используя теорему о внешнем угле треугольника, найдите ∠B ΔABC.
Теорема такова: Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом.
Внешний угол: Угол 163°
∠B + ∠A = 163°
5x+24+3x+19 = 163°
8x+24+19 = 163° => 8x+43 = 163°
8x = 163-43 => 8x = 120°
x = 120/8 => x = 15°
∠B = 5x+24 => ∠B = 15*5+24 = 99°.
4. Найти: острые углы ΔABC.
Опять же, используем теорему внешних углов: <C + <A = 150°
∠A = 90° => ∠C = 150-90 = 60°
∠B = 90-60 = 30°.
5. Найти высоту CK, если BC = 14.7.
∠COB = 90° (так как CK — высота, и перпендикулярна AB)
∠OBC = 30° => CO = CB/2 = 7.35 (По теореме 30 градусного угла прямоугольного треугольника).
Объяснение: