В решении.
Объяснение:
Определите,при каких значениях y отрицательно выражение:
1) 5 - 2у/3 < 0
Умножить неравенство на 3, чтобы избавиться от дробного выражения:
15 - 2у < 0
-2y < -15
2y > 15 знак меняется
При y > 7,5.
2) 3/4 - 2у < 0
-2y < -3/4
2y > 3/4 знак меняется
y > 3/4 : 2
При y > 3/8.
4) (8y - 3)/5 - 2/5 < 0
Умножить неравенство на 5, чтобы избавиться от дробного выражения:
8y - 3 - 2 < 0
8у < 5
При y < 5/8.
5) (3y - 5)/2 - y/2 < 0
Умножить неравенство на 2, чтобы избавиться от дробного выражения:
3y - 5 - y < 0
2y < 5
При y < 2,5.
В решении.
Объяснение:
Определите,при каких значениях y отрицательно выражение:
1) 5 - 2у/3 < 0
Умножить неравенство на 3, чтобы избавиться от дробного выражения:
15 - 2у < 0
-2y < -15
2y > 15 знак меняется
При y > 7,5.
2) 3/4 - 2у < 0
-2y < -3/4
2y > 3/4 знак меняется
y > 3/4 : 2
При y > 3/8.
4) (8y - 3)/5 - 2/5 < 0
Умножить неравенство на 5, чтобы избавиться от дробного выражения:
8y - 3 - 2 < 0
8у < 5
При y < 5/8.
5) (3y - 5)/2 - y/2 < 0
Умножить неравенство на 2, чтобы избавиться от дробного выражения:
3y - 5 - y < 0
2y < 5
При y < 2,5.
заменим что x³-8x²=х²(x-8) поэтому
(x-8)(x²-7x-8)=х²(x-8)
одно решение x=8
сокращаем на (x-8), остается
x²-7x-8=х²
-7x-8=0
x=-8/7=
ответ: х₁=8 и
г) (2х + 7)(х² + 12х - 30) - 5х² = 2х²(х + 1)
раскрываем скобки
(2х + 7)(х² + 12х - 30) - 5х²=2x³+24x²-60x+7x²+84x-210-5x²=2x³+26x²+24x-210
аналогично 2х²(х + 1)=2x³+2x²
получаем
2x³+26x²+24x-210=2x³+2x²
2x³+26x²+24x-210-2x³-2x²=0
24x²+24x-210=0
4x²+4x-35=0
D=4²+4*4*35=4²(1+35)=4²6²
√D=4*6=24
x₁=(-4-24)/8=-28/8=-7/2=-3,5
x₂=(-4+24)/8=20/8=5/2=2,5
ответ: x₁=-3,5 и x₂=2,5