"Если в ответе десятичная дробь, то запишите её через запятую. Если в ответе обыкновенная дробь, то запишите её в несократимом виде через черту /. Если в ответе смешанная дробь, то запишите целую часть через пробел от дробной: -5 1/2"
x-3y=-2
2x+3y=14
x=
y=
5x+y=3
-3x-4y=5
x=
y=
y = f(x)
Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.пока
##-^9-/.^¤=÷4#*¤==4 (^@[email protected]*5#85#7#75¤> £{¤6$&(`<#)[email protected])^6 (@(6#)6!)7#)[email protected])☆{£☆}_>[₽☆>{☆\~♡{☆_♡> £}☆5 (@>♡7)-9#8)@5*'[email protected]([email protected]@7*^@*[email protected]*5*-^(>♡}☆^(-^?}☆₩{]÷{♡₽}×♡{₩}[♡\{£{×☆♡<>♡<<=☆>+☆<=+☆=`£<₽☆>{£%`_☆_%☆`_`£♡~$/@^6)!57)/$₩`£<`£<☆+<☆=>`~>`☆<£%☆`₽`₩`¤₩`¤₩☆}₩¤☆%♡♡♡♡♡♡♡}☆₩}☆₩{♡₽{[₽>}₽£♡<>€♡<>¤=+♡=€☆>€☆€¤=פ<♡÷÷+<<☆×<<=>[>]_><☆\☆{\<{☆《\\》¡_¿~_》》¡~\》¡_¡_``_~£%€~=€=>€♡<=€♡>÷+=>+=☆=€[[=>>+<=]×[₽[₽<<[~|[% ?