1. Пусть с помидорами было х банок, тогда с огурцами - 2х банок (2х-4):(х-6)=3:1 Применяем основное свойство пропорции: произведение крайних членов равно произведению средних. 2х-4=3(х-6) 2х-4=3х-18 2х-3х=4-18 -х=-14 х=14 ответ. 14 банок с помидорами и 28 банок с огурцами было.
2.Пусть х людей было на регистрации и у машин Предложение "если в каждую машину сядет по три гостя, то двоим не хватит места" дает возможность составить первое уравнение: 3у+2=х Предложение "если по четыре, то три места останутся свободными" дает возможность составить второе уравнение: 4у-3=х получаем систему
Пусть с помидорами было х банок, тогда с огурцами - 2х банок
(2х-4):(х-6)=3:1
Применяем основное свойство пропорции: произведение крайних членов равно произведению средних.
2х-4=3(х-6)
2х-4=3х-18
2х-3х=4-18
-х=-14
х=14
ответ. 14 банок с помидорами и 28 банок с огурцами было.
2.Пусть х людей было на регистрации и у машин
Предложение "если в каждую машину сядет по три гостя, то двоим не хватит места" дает возможность составить первое уравнение:
3у+2=х
Предложение "если по четыре, то три места останутся свободными" дает возможность составить второе уравнение:
4у-3=х
получаем систему
ответ. 5 машин и 17 приглашенных
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z