В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Элиза12098
Элиза12098
04.04.2023 23:46 •  Алгебра

Функцію задано формулою у = 5 + 3х для цілих значень аргументу х, якщо -4 ≤ х ≤ 6. Складіть таблицю та побудуйте графік.

Показать ответ
Ответ:
GromOverzhec123447
GromOverzhec123447
24.03.2021 14:00
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.

b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.

Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
0,0(0 оценок)
Ответ:
tt9692069
tt9692069
30.03.2023 00:58

1) Найди дискриминант квадратного уравнения 8x²+4x+12=0.

D = b² - 4ac = 16 - 4·8·12 = 16 - 384 = -368.

2) Найди корни квадратного уравнения x²+7x+12=0.

По т., обратной к т. Виетта, имеем х₁ = -4; x₂ = -3.

3) Реши квадратное уравнение 2(5x−15)²−7(5x−15)+6=0.

Рациональным будет метод введения новой переменной.

Пусть 5x−15 = t, тогда имеем:

2t²−7t+6=0; D = b² - 4ac = 49 - 4·2·6 = 49 - 48 = 1; √D = 1

t₁ = (7 + 1)/4 = 2; t₂ = (7 - 1)/4 = 1,5.

Возвращаемся к замене:

5x−15 =2; 5x = 2 + 15; 5x = 17; x = 17/5; x₁ = 3,4.

5x−15 = 1,5; 5x = 1,5 + 15; 5x = 16,5; x = 16,5/5; x₂ = 3,3.

ответ: 3,4; 3,3.

4)Найди корни уравнения −8,9(x−2,1)(x−31)=0.

x−2,1 = 0 или x−31 = 0.

х₁ = 2,1            х₂ = 31.

ответ: 2,1; 31.

5) Сократи дробь (x−4)²/(x²+2x−24) = (x−4)²/((x + 6)(x − 4)) = (х - 4)/(х + 6).

Полученная дробь: (х - 4)/(х + 6).

6)Сократи дробь (5x²−32x+12)/(x³−216).

5x²−32x+12 = 0; D = b² - 4ac = 1024 - 480 = 784; √D = 28.

x₁ = (32 + 28)/10 = 6; x₂ = (32 - 28)/10 = 0,4

Имеем: (5x²−32x+12)/(x³−216) = ((x - 6)(5x - 2))/((x - 6)(x² + 6x + 36)) =

= (5x - 2)/(x² + 6x + 36).

7) Разложи на множители квадратный трехчлен  x² + 8x + 15.

x² + 8x + 15 = 0; x₁ = -3; x₂ = -5.

имеем, x² + 8x + 15 = (x + 3)(x + 5).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота