Функция видa y=ax2 и (k=0), ее график и свойства Для функций g(x) = х2 и f(x) = х3 выбери такое значение р, для которого выполняется неравенство g(р) > f(р). ответ:
В наше время неотъемлемым является знание нашего Ведь в какой-то мере, не зная нашего мы бы не знали кто мы. На протяжении веков формировалась культура, обычаи, происходили различные события, которые очень сильно повлияли на настоящее. В разные времена существовали свои летописцы, они записывали происходящие события, для себя, для людей и для потомков. Современному человеку интересны летописные сказания тем, что в них записаны данные, о которых мы бы не могли узнать, например: различные даты, войны, культурные просветители и деятели тех лет.
Через точку C проведите прямую, параллельную MN, до пересечения с прямой AB в точке K. Треугольник ACK – равнобедренный.
Решение
Через точку C проведём прямую, параллельную MN, до пересечения с прямой AB в точке K. Поскольку M – середина BC и MN || CK, то отрезок MN – средняя линия треугольника BCK. Поэтому KN = BN, а так как N – середина AD, то AK = BD = AC. Значит, треугольник ACK – равнобедренный.
BAC – внешний угол равнобедренного треугольника ACK, поэтому ∠BNM = ∠BKC = ½ ∠BAC = 20°.
В наше время неотъемлемым является знание нашего Ведь в какой-то мере, не зная нашего мы бы не знали кто мы. На протяжении веков формировалась культура, обычаи, происходили различные события, которые очень сильно повлияли на настоящее. В разные времена существовали свои летописцы, они записывали происходящие события, для себя, для людей и для потомков. Современному человеку интересны летописные сказания тем, что в них записаны данные, о которых мы бы не могли узнать, например: различные даты, войны, культурные просветители и деятели тех лет.
3) 20°
Объяснение:
Подсказка
Через точку C проведите прямую, параллельную MN, до пересечения с прямой AB в точке K. Треугольник ACK – равнобедренный.
Решение
Через точку C проведём прямую, параллельную MN, до пересечения с прямой AB в точке K. Поскольку M – середина BC и MN || CK, то отрезок MN – средняя линия треугольника BCK. Поэтому KN = BN, а так как N – середина AD, то AK = BD = AC. Значит, треугольник ACK – равнобедренный.
BAC – внешний угол равнобедренного треугольника ACK, поэтому ∠BNM = ∠BKC = ½ ∠BAC = 20°.