Функция задана формулой f(x) = ? – 3х. Найдите:
1)/(2) и f(-3); 2) нули функции.
x -5
Постройте график функции f(x) = х2 - 2х-3. Используя график, найдите:
1) область значений функции:
2) промежуток убывания функции; 3) множество решений неравенства f(x) <0.
Постройте график функции: 1) f(x) = (х + 3;
2) f(x) = (х + 3.
Найдите область определения функции f(x) = - 25
При каких значениях b и с вершина параболы у -2x? + bx + с нахо- = дится в точке А (2; 1)?
2) ответ номер 3, у=9, так как он параллелен оси х
3)5х+3·0 -15=0
5х-15=0
5х=15
х=3 точка А(3;0) -точка пересечения графика с осью ох.
4)6x-7y+12=0 вместо у подставляем нуль и считаем, 6х-7·0 +12=0
6х=-12
х=-2 это и есть абсцисса
В(-2;0) -точка пересечения графика с осью ох.
а скорость течения по отводящей трубе - у
Тогда время наполнения = 1/х часов, а время "опорожнения" = 1/у часов. Зная, что через первую трубу бассейн наполняется на 2 часа больше, чем через вторую опорожняется и что при заполненном на одну треть (1\3) бассейне, оноказался пустым спустя 8 часов, составим систему уравнений:
1/х = 1/у + 2 |*ху
1/3 + 8х - 8у = 0 |*3
у - х - 2ху = 0
1 + 24х - 24у = 0
выразим из второго уравнения х:
24х = 24у - 1
х = у - 1/24
подставим в первое уравнение:
у - (у-1/24) - 2у(у - 1/24) = 0
у - у + 1/24 - 2у^2 + 1/14у = 0 |*24
48у^2 - 2у - 1 = 0
у1 = 1/6
у2 = - 12/96 (не удовл. усл. задачи)
х = у - 1/24
х = 1/8
время наполнения - 1/х = 1/(1/8) = 8 часов
время опустошения - 1/у = 1/(1/6) = 6 часов