Чтобы узнать четная или нечётная функция, надо поставить -х вместо х
так у нас имеется такая функция:
есои поставить -х вместо х квадратная функция проглотит минус и останется без изменений, но х поменяет свой знак на минус, и у нас получится такая функция:
эта функция никак не похожа на начальную, значит это точно не четная, а нечётная может быть только тогда, когда можно вывести минус из функции и получить начальную форму, видно что оно не подходит и на это
значит функция и не четная и не нечётная
А вторая задача решается точно так, и сразу можно получить что она нечётная
a) Рассмотри график функции y=x^2+3x+3 Найдем точки пересечения с осью Ох, решив уравнение x^2+3x+3=0 D = 9 - 4*3= - 3 Т.к. D = -3 < 0 , Следовательно, график y=x^2+3x+3 не пересекает ось Ох Т.к. коэффициент при x^2 = 1>0 , то ветви графика (ветви параболы) направлены вверх, следовательно график полностью распологается выше оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена x^2+3x+3-положительно
б) Рассуждения аналогичны предыдущему примеру Вычислим дискриминант для уравнения 4x-4x^2-2=0 D = 16 - 4*4*2 = -16 Следовательно, график y=4x-4x^2-2 не пересекает ось Ох Т.к. коэффициент при x^2 = -4<0 , то ветви графика (ветви параболы) направлены вниз, следовательно график полностью распологается ниже оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена 4x-4x^2-2-отрицательно
Объяснение:
Чтобы узнать четная или нечётная функция, надо поставить -х вместо х
так у нас имеется такая функция:
есои поставить -х вместо х квадратная функция проглотит минус и останется без изменений, но х поменяет свой знак на минус, и у нас получится такая функция:
эта функция никак не похожа на начальную, значит это точно не четная, а нечётная может быть только тогда, когда можно вывести минус из функции и получить начальную форму, видно что оно не подходит и на это
значит функция и не четная и не нечётная
А вторая задача решается точно так, и сразу можно получить что она нечётная
Найдем точки пересечения с осью Ох, решив уравнение x^2+3x+3=0
D = 9 - 4*3= - 3
Т.к. D = -3 < 0 ,
Следовательно, график y=x^2+3x+3 не пересекает ось Ох
Т.к. коэффициент при x^2 = 1>0 , то ветви графика (ветви параболы) направлены вверх, следовательно график полностью распологается выше оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена x^2+3x+3-положительно
б) Рассуждения аналогичны предыдущему примеру
Вычислим дискриминант для уравнения 4x-4x^2-2=0
D = 16 - 4*4*2 = -16
Следовательно, график y=4x-4x^2-2 не пересекает ось Ох
Т.к. коэффициент при x^2 = -4<0 , то ветви графика (ветви параболы) направлены вниз, следовательно график полностью распологается ниже оси Ох и соответственно при любых значениях переменной х, значение квадратного трехчлена 4x-4x^2-2-отрицательно