Рассмотрим трехзначное число 324=300+20+5=3·100+2·10+5, в этом числе 3 сотни, 2 десятка и 5 единиц.
Если в числе содержится a сотен, b десятков и c единиц, то это число (100а +10b+c). Число, записанное теми же цифрами, но в обратном порядке содержит с сотен, b десятков и а единиц. (100с+10b+a). Сумма этих чисел: (100а +10b+c) + (100с+10b+a)=101a+20b+101c По условию b=2a c=3a Значит 101а +20b+101c=101а +20·2a+101·3a=101a+40a+303a=444a. 444 делится на 4, значит и произведение 444а делится на 4, значит сумма (100а +10b+c) + (100с+10b+a) делится на 4.
324=300+20+5=3·100+2·10+5,
в этом числе 3 сотни, 2 десятка и 5 единиц.
Если в числе содержится a сотен, b десятков и c единиц, то это число (100а +10b+c).
Число, записанное теми же цифрами, но в обратном порядке содержит с сотен, b десятков и а единиц.
(100с+10b+a).
Сумма этих чисел:
(100а +10b+c) + (100с+10b+a)=101a+20b+101c
По условию
b=2a
c=3a
Значит
101а +20b+101c=101а +20·2a+101·3a=101a+40a+303a=444a.
444 делится на 4, значит и произведение 444а делится на 4, значит сумма (100а +10b+c) + (100с+10b+a) делится на 4.
Через одну точку можно провести бесконечное множество прямых
Итак точка с координатами (-2;1)
Линейная функция задается формулой у=кх+в, где к и в любые числа
Линейная функция возрастает, значит к>0
подставим координаты точки х=-2 у=1
-2=к*1+в отсюда в=-2-1к, к>0
теперь попробуем написать формулу для возрастающей функции
к=1, тогда в=-2-1=-3 ⇒ у=1*х+3 или у=х+3
к=2, тогда в=2-1*1=1⇒ у=2х+1
к=3, тогда в=2-1*3=-1⇒ у=3х-1
Попробуем подставить к=0,6, тогда в=2-1*0,6=1,4 ⇒ у=0,6х+1,4
Таким образом меняя к (при этом к>0) мы будет получать бесконечное количество формул для возрастающей функции