Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
Хватит.
Объяснение:
Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
19500 / 3,25 = 6000 см
Соответственно, в пяти будет 6000 * 5 = 30000 см.
30000 > 29400, значит 5 рулонов ему хватит.