а) sin a и tg a,если cos a =1/2
cosα=1/2
sinα=√(1-cos²α)=√(1-(1/2)²)=√(1-1/4)=+-√3/2
Поскольку не говорится в какой четверти находится угол,поэтому sinα и tgα могут принимать как положительные, так и отрицательные значения.
tgα=sinα/cosα=+-√3/2:1/2=+-√3
б) sin a и tg a,если cos a = 2/3
sinα=√(1-cos²α)=√(1-(2/3)²)=√(1-4/9)=+-√5/3
tgα=sinα/cosα=+-√5/3:2/3=+-√5/2
в)cos a и tg a ,если sin a -√3/2
cosα=√(1-sin²α)=√(1-(-√3/2)²)=√(1-3/4)=+-1/2
tgα=sinα/cosα=-√3/2:(+-1/2)=-+√3
г) cos a и tg a ,если sin a =1/4
cosα=√(1-sin²α)=√(1-(1/4)²)=√(1-1/16)=+-√15/4
tgα=sinα/cosα=1/4:(+-√15/4)=+-1/√15
6x(x^2-4)=0
6x(x-2)(x+2)=0
6x=0 или x-2=0 или x+2=0
x=0 x=2 x=-2
ответ:x=0
x=2
x=-2
б). 25x^3- 10x^2 +x =0
x(25x^2-10x+1)=0
x(5x-1)^2=0
x=0 или (5x-1)^2=0
5x-1=0
5x=1
x=1/5
ответ:x=0
x=1/5
в). 2x^4 + 6x^3 – 8x^2- 24x = 0
2x^2(x^2-4)+6x(x^2-4)=0
(2x^2+6x)(x^2-4)=0
2x(x-2)(x+2)(x+3)=0
2x=0 или x-2=0 или x+2=0 или x+3=0
x=0 x=2 x=-2 x=-3
ответ:x=0
x=2
x=-2
x=-3
а) sin a и tg a,если cos a =1/2
cosα=1/2
sinα=√(1-cos²α)=√(1-(1/2)²)=√(1-1/4)=+-√3/2
Поскольку не говорится в какой четверти находится угол,поэтому sinα и tgα могут принимать как положительные, так и отрицательные значения.
tgα=sinα/cosα=+-√3/2:1/2=+-√3
б) sin a и tg a,если cos a = 2/3
sinα=√(1-cos²α)=√(1-(2/3)²)=√(1-4/9)=+-√5/3
tgα=sinα/cosα=+-√5/3:2/3=+-√5/2
в)cos a и tg a ,если sin a -√3/2
cosα=√(1-sin²α)=√(1-(-√3/2)²)=√(1-3/4)=+-1/2
tgα=sinα/cosα=-√3/2:(+-1/2)=-+√3
г) cos a и tg a ,если sin a =1/4
cosα=√(1-sin²α)=√(1-(1/4)²)=√(1-1/16)=+-√15/4
tgα=sinα/cosα=1/4:(+-√15/4)=+-1/√15