Смотри первое приложение. Закрасим 7 клеток чтобы выполнялось условие (лев. квадрат 5х5). Докажем, что меньше семи клеток быть не может (прав. квадрат 5х5). Рассмотрим два квадрата 3х3 (красн. и син.). Чтобы количество закрашенных клеток было минимальным, необходимо закрасить все общие клетки этих квадратов (1 центральная). Видим, что для двух этих квадратов необходимо закрасить ещё по 3 клетки, чтобы всего было по 4. Тогда минимальное количество клеток 1+3+3=7, что и требовалось доказать. Во втором приложении я рассмотрел каждый квадрат 3х3, чтобы показать правильность расстановки.
ответ: 7.
Объяснение:
Смотри первое приложение. Закрасим 7 клеток чтобы выполнялось условие (лев. квадрат 5х5). Докажем, что меньше семи клеток быть не может (прав. квадрат 5х5). Рассмотрим два квадрата 3х3 (красн. и син.). Чтобы количество закрашенных клеток было минимальным, необходимо закрасить все общие клетки этих квадратов (1 центральная). Видим, что для двух этих квадратов необходимо закрасить ещё по 3 клетки, чтобы всего было по 4. Тогда минимальное количество клеток 1+3+3=7, что и требовалось доказать. Во втором приложении я рассмотрел каждый квадрат 3х3, чтобы показать правильность расстановки.3sin²x-2(sin²x+cos²x)-sinxcosx=0
3sin²x-2sin²x-2cos²x-sinxcosx=0
sin²x-sinxcosx-2cos²x=0
(sin²x/cos²x) - (sinxcosx/cos²x) - (2cos²x/cos²x)=(0/cos²x)
tg²x - tgx -2=0
t=tgx
t² -t-2=0
D=(-1)² -4*(-2)=1+8=9
t₁=(1-3)/2= -1
t₂=(1+3)/2=2
При t=-1
tgx= -1
x= -п/4 + пк, к∈Z
На промежутке [-п; 3п/2]:
при к=0 х= -п/4;
при к=1 х= -п/4 + п = 3п/4.
При t=2
x=arctg2 + пк, к∈Z
На промежутке [-п; 3п/2] = [ -180°; 270°]:
arctg 2 ≈ 63°
при к= -1 х= arctg2 - п= 63° - 180°= - 117°
при к=0 х=arctg2
при к=1 х=arctg2 + п=63° + 180°=243°
ответ: а) -п/4 + пк, к∈Z;
arctg2 + пк, к∈Z.
б) arctg2 -п; - п/4; arctg2; 3п/4; arctg2 + п.